CLUSTERTOOLS ClusterTools (ClusterTools Guide)
|
| cluste | Examplar clustering |
| clustf | Clustering by farthest first traversal algorithm |
| clusth | Hierarchical clustering in feature space |
| clustk | Feature space clustering by K prototype procedures |
| clustm | Multi-level clustering by kNN mode-seeking |
| clustr | Random clustering |
| clusts | Mean shift mode-seeking clustering |
| labnn | Find indices of k nearest neighbors |
| exemplar | Back-end Exemplar clustering |
| modeclust | Back-end kNN mode-seeking clustering |
| modeclustf | Back-end Fast kNN mode-seeking clustering |
| dcluste | Examplar clustering on given dissimilarities |
| dclustf | Clustering by farthest first traversal algorithm |
| dclusth | Hierarchical clustering on given dissimilarities |
| dclustk | k-centres or k-medoids on given dissimilarities |
| dclustm | kNN mode-seeking on given dissimilarities |
| dclustr | Random clustering |
| recluste | Extend multi-level clustering |
| reclusth | Hierarchical reclustering |
| reclustk | Determining exactly K clusters |
| reclustn | Creating a nested set of clusterings |
| semisupc | Semi-supervised classifier |
| clustc | Semi-supervised classifier by confidence propagation |
| clusthc | Hierarchical clustering based classifier |
| nnprotoc | Nearest neighbor classifier using cluster prototypes |
| clusteval | Evaluate clusterings by various performance measures |
| actleval | Evaluate clustering by active learning performance |
| clustcerr | Cluster classification error on indiviual clusterings |
| clustlcurve | Compute learning from multilevel clustering |
| mclustlcurve | Compute learning from multiclustering classification |
| mclustcerr | Cluster classification error combining clusterings |
| clust2proto | Find prototypes from clustering |
| dclust2proto | Find prototypes from clustering of dissimilarities |
| clustnum | Number of clusters in multilevel clustering |
| clustsizes | Cluster sizes and prototypes in multilevel clustering |
| clustinds | Find cluster indices fast |
| gendatclust1 | Generate a 10-class 2D dataset |
| gendatclust2 | Generate an 8-class 2D dataset |
| gendset | Generate data from a clustering based Parzen density |
| eadist | Create evidence accumulation dissimilarity matrix |
| labsort | Sort label array of a multiclustering |
| lab2clust | Find cell array of object indices per cluster |
| dselproto | Select prototypes from dissimilarity matrix |
| selproto | Select prototypes from dataset (PRTools) |
| scatn | simple scatter plot |
| PRTools Guide |