| im_moments
 IM_MOMENTS 
 Fixed mapping for computing central moments of object images
 
     M = IM_MOMENTS(A,TYPE,MOMENTS) 
     M = A*IM_MOMENTS([],TYPE,MOMENTS) 
     M = A*IM_MOMENTS(TYPE,MOMENTS) 
 
  | Input |  |  A |          Dataset with object images dataset (possibly multi-band) |   |  TYPE |       Desired type of moments |   |  MOMENTS |    Desired moments |   
 | Output |  |  M |          Dataset with moments replacing images (poosibly multi-band) |   
 Description Computes for all images in A a (1*N) vector M moments as defined by TYPE  and MOMENTS. The following types are supported
  
 |  TYPE |   = 'none'     Standard moments as specified in the Nx2 array MOMENTS.  Moments are computed with respect to the image center.  This is the default for TYPE.  Default MOMENTS = [1 0; 0 1];  |  |  TYPE |   = 'central'  Central moments as specified in the Nx2 array MOMENTS.  Moments are computed with respect to the image mean  Default MOMENTS = [2 0; 1 1; 0 2], which computes  the variance in the x-direction (horizontal), the  covariance between x and y and the variance in the  y-direction (vertical). |   |  TYPE |   = 'scaled'   Scale-invariant moments as specified in the Nx2 array  MOMENTS. Default MOMENTS = [2 0; 1 1; 0 2]. See [1]. |   |  TYPE |   = 'hu'       Calculates 7 moments of Hu, invariant to translation,  rotation and scale. See [1]. |   |  TYPE |   = 'zer'      Calculates the Zernike moments up to the order as  specified in the scalar MOMENTS (1 <= MOMENTS <= 12).  MOMENTS = 12 generates in total 47 moments. See [2]. |   
 Reference(s)1. M. Sonka et al., Image processing, analysis and machine vision. 2. A. Khotanzad and Y.H. Hong, Invariant image recognition by Zernike moments, IEEE-PAMI, vol. 12, no. 5, 1990, 489-497.  See also
datasets, datafiles,  | This file has been automatically generated. If badly readable, use the help-command in Matlab. |  
  |