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About this ebook

This ebook gives the starting student an introduction into the field of
pattern recognition. It may serve as reference to others by giving intuitive
descriptions of the terminology. The book is the first in a series of ebooks
on topics and examples in the field.

Our goal is an informal explanation of the concepts. For thorough math-
ematical descriptions we refer to the textbooks and lectures. In ten
chapters the topics of pattern recognition are summarized and its termi-
nology is introduced. In the glossary about 200 terms are described. All
glossary terms are linked, forward and backward by hypertext. In the
glossary chapter external links are provided to internet pages, papers tu-
torials, Wikipedia entries, examples, etcetera. Internal links are in dark
blue in order to preserve the readability. External links are in blue.

This ebook is offered by the authors of a website on pattern recognition
tools, http://37steps.com/. Here more information, software, data
and examples can be found. The book itself does not assume the use
of specific software. The code for generating the examples, however, is
written in Matlab using PRTools. It can be inspected by clicking on the
figures or example links.

How to read

A very simple and useful pdf reader for this document is Sumatra PDF.
It uses by default the backspace as the back-button. Other pdf readers
should be adjusted such that returning to the previous page is as a handy
shortcut available. It is often needed for browsing through this ebook.
See here for some tips. In this case a web browser should be open next to
the book. Alternatively, the document may be read inside a web browser.
Use single page view if possible.

The medium size version of the book has been formatted such that it is
suitable for a computer screen. The small size version is suitable for an
e-reader like the Kindle. Here external links may not work. Reading and
browsing through the ebook may still be of interest to get acquainted to
the pattern recognition terminology.

http://37steps.com/
http://www.37steps.com/prtools/
http://www.sumatrapdfreader.org/free-pdf-reader.html
http://superuser.com/questions/22786/back-button-of-adobe-pdf-reader-after-clicking-a-hyperlink-whose-target-is-on-th


About 37Steps

The website http://37steps.com has been created by the authors af-
ter they left university. They have been engaged with pattern recogni-
tion for decades and put together their insights, experiences and soft-
ware. All material is for free. However, donations are appreciated:
http://37steps.com/donations.
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Chapter 1

Introduction

1.1 Recognition and consciousness

For a very small child a walk into the world is a walk into the wild: all
is new and exciting. Every object, every sound, every shape provides a
new experience. Consequently, it does not know how to interpret what
is happening, nor is it able to walk or to grasp objects properly. It does
not know how to hold an item or how to walk. That is beneficial, as it
also does not know about danger and, as a result, can freely explore the
world around. Such an exploration cannot continue forever. If the child
has to become independent of its protecting environment, it will have to
know and to understand, it will have to act and to deal with the world
in a sensible way.

The miracle of memory helps to overcome the state of ignorance. It
converts the chaos of the wild into a world where we can organize the
information and find our way. Thanks to the memory we find our way
back to a safe place or to a place where the food has been stored. Thanks
to the memory we learn to avoid the danger. We recognize the past in
the present. Thanks to successes and disappointments we learn how to
deal with them. Memory yields consciousness. And consciousness is
the basis for recognition and understanding.

How is this possible? The human abilities of consciousness and recog-
nition are miracles as large as the physical basis of gravity and light.
They are there. We can build some models, but we are still far from
understanding how the light that enters the eye generates the word or
the idea ’tree’ in the mind. At the bottom there is the first principle:
we may say that we understand, but what do we mean by that? Do we
understand understanding? The entire field of pattern recognition is an
effort to come somewhat closer to this understanding. This can be done
in a scientific way, or by attempts to create artificial devices that mimic
the human ability. Here we will give an introduction how results of the
first are used for the second.

4



1.2 Creating artificial PR systems 5

The present is never equal to the past. There are always differences.
Every street, every tree or every person that we meet is different from all
streets, trees and persons we have seen before. How do we know that the
new place where we find ourselves is a street anyway? How do we know
that the figure on the quilt is a tree? Or, how do we know that we know
the person who is standing at the door? Even if she is our partner and
we have lived with her for 37 years the question how we recognize her is
intriguing.

There may be just minor differences between what we see in the very
moment and what we have left behind this morning and that is still
in our memory. But, why are some differences minor while others are
major? How do we judge that? How do we know which differences are
essential? In one way or the other we are able to judge that different
observations refer to the same object we have seen before. Even, in the
case we have never seen a particular object, we are able to recognize to
which class of similar objects it belongs.

The ability to judge the similarity between objects or events is called
generalization. Given a few examples, sometimes even a single one, we
are able to tell whether a new, unseen object belongs to the same group.
Its similarity to previously observed objects is sufficiently large. Human
beings are pattern recognizers, not just because of this recognition abil-
ity, but especially because we are aware of it. We can handle it, we can
teach the patterns to others and discuss with them our observations.

The generalization skill develops our consciousness further. It consti-
tutes the basis of any science, in particular, the natural sciences. The
question how we do this, how we come from observations to memory
and to generalization is thereby the basic scientific question of pattern
recognition.

1.2 Creating artificial PR systems

From the early development of computers, scientists and engineers tried
to imitate the human recognition ability by mechanical means, either
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partially or in its entirety. Two types of main results have been obtained
from these efforts so far.

First, scientific results have been gained: a better understanding of the
human perception, reasoning and the ability to gain new knowledge which
may be applied in a changing environment. This resulted in more insight
in the human senses and the neural system. To some extent, this un-
derstanding can be expressed in mental, psychological and philosophical
terms. Herewith observations, facts and existing knowledge are com-
bined by reasoning yielding some new conclusions.

Attempts to design sensors, computers and programs that imitate such
processes bring an additional prospect to the investigation of possible
biological models. An ever returning difficulty, however, is the relation
of low level phenomena occurring in the senses and the nerves with high
level understanding and conceptual thinking. How do externally mea-
surable, physical and biological processes generate the internal observa-
tion of recognition and understanding? This problem is related to the
so-called semantic gap and is one of the main unsolved scientific ques-
tions.

Second, many contributions to the engineering practise have been cre-
ated. Various pattern recognition systems have been developed that
are of practical use, as for the assistance in medical diagnosis, industrial
inspection, personal identification and man-machine interaction. Very of-
ten, they are not based on a detailed simulation of the human processes,
but on specific approaches to the problem at hand.

It is striking and interesting to observe that artificial recognition devices,
especially the ones that learn from examples, are almost not, or just
superficially based on a modeling of the human perception and learning
abilities. This can be compared with other biological studies. We know a
lot of how birds fly, but airplanes are constructed differently. One of the
reasons is that the artificial systems may serve different purposes: they
need to be more stable and should sometimes be faster and larger, at the
cost of a reduced flexibility.
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In this book, we will focus on the pattern recognition research aiming at
the development of automatic systems. We will especially deal with the
possibilities of these systems to learn from sets of examples. A general,
global description of such systems will be presented, resulting in a in-
tuitive characterization of the various steps and procedures that can be
distinguished in their design and operation. This will be illustrated by
simple examples.

The main goal of the book is to give the student a first introduction
into the terminology used in the field of pattern recognition. In the final
chapter a glossary is presented in which short characterizations of the
main terms are given with backward references to the places where they
have been introduced or used for the first time. A few non-standard terms
are added for completeness. For most other ones holds that they used
in the literature in various different ways. Therefore, strict definitions
are not presented here. It is expected that readers have some implicit
pattern recognition ability and are able to learn from the examples as
they have been made available.



Chapter 2

A small example

After all these introductory words it is more than time to discuss a simple
example. Let us take a small dataset, the so-called Kimia images. This
is a set of silhouettes of 2D figures. Figure 1 shows two of the classes,
elephants and camels, each given by 12 examples. Suppose we take out
one elephant and show it to somebody who has no knowledge about these
animals, e.g. a 3-year old boy. Would he be able to name it if we would
show him the other 23 figures and name for each of them the class? It is
probable that he wouldn’t have any problem with that.

Figure 1: Two classes in the Kimia dataset

Let us now try to do the same with a computer. We need to compare
figures in a numeric way: compute some type of distances or similarities.
To that end a comparable representation has to be established. As the
images have all different sizes, counting pixel differences is not straight-
forward. We will try something very elementary and compute the sizes
(blob areas in pixels) and perimeter lengths (in pixels). They are graph-
ically represented in the scatter plot of Figure 2. This is a picture of
what is called a feature space. This is a vector space in which objects,

8
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2.0 A small example 9

here the animal blobs, are represented by characteristic properties, here
area and perimeter length.

If the features really correspond to characteristic properties, then similar
objects are close in feature space. Similar objects are expected to belong
to the same class. In the plot the objects are encircled that have nearest
neighbors of a different class. The fraction of encircled objects gives an
indication of the usefulness of this feature space for recognizing new,
similar objects of the same classes.

A problem with this feature space is that the area is dominating over
the perimeter as the spread of its values is much larger. If features are
considered to be equally important, feature spaces should be created in
which they are equally scaled. This is done in the next scatter plot,
Figure 3, by dividing all feature values by their corresponding standard
deviation.

Figure 2: Scatter plots of two classes in the Kimia dataset based on perimeter
and area. Objects are encircled for which the nearest neighbor is of a different
class. Two erroneously classified objects are almost on top of each other. Note
that the perimeter is hardly of significance as the values of the area feature are
much larger.

http://37steps.com/exam/kimia_simple/
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In this case the result of the scaling is that less objects are assigned to
the wrong class, indicating that the scaled feature space is better for
classification. The improvement (5 instead of 7 errors), however, is in
this case not significant. It is certainly not true that rescaling is always
better. In some cases it known that the features as they are measured
are informative. This should not be spoiled. Anyway, whether scaling is
appropriate or not should always be considered.

Once a feature space is found that is appropriate for classifying new ob-
jects with unknown class memberships, it can be used for computing a
definite classifier. Several procedures are possible. In Figure 4 the result
of the same classifier as used above is shown using the entire available
training set. For new objects the same features, area and perimeter
should be measured and the same scaling factor as found for the training
set should be applied.

Figure 3: Scatter plots of two classes in the Kimia dataset based on perimeter
and area. The values of perimeter and area are rescaled using their standard
deviation. Objects are encircled for which the nearest neighbor is of a different
class.

http://37steps.com/exam/kimia_simple/
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In order to have a reliable estimate of the classification accuracy of this
classifier, an additional test set is needed, representative for the appli-
cation and independent of the training set. If the entire design set (the
union of training set and test set) is used for training the classifier, it
is expected to be better, i.e. to have a lower classification error. Using
this design set or one of its subsets (training set or test set), however, it
will be optimistically biased as they are used for training this classifier.
Strategies for dealing with this dilemma, computing the best classifier or
estimating a reliable classification error, are discussed in section 8.1.

To end this chapter we summarize the steps that have been taken in the
design of the pattern classifier and the main concepts used.

Representation If we want to build automatic recognition system for
real world objects they should be represented in a way they can
be compared by a computer. Here we used a camera to obtain
black-and-white images in which the objects are blobs. The areas
and perimeters of the blobs are used to construct 2D vectors in a
feature space.

Figure 4: The classifier computed for the entire available dataset.

http://37steps.com/exam/kimia_simple/
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Adaptation By studying the representation is was found that the area
dominated as it showed much larger values and thereby much larger
differences between the objects. The variations were normalized by
dividing by the standard deviation to give features an equal spread.
Consequently, distances between objects are now equally influenced
by the two features.

Evaluation We need to find how good a particular representation is.
This is useful for finding better representations and for optimizing
an adaptation. See also chapter 6 and chapter 8.

Generalization The final system should be such that it is possible to
apply it to new, unseen objects, that have not been used in the
design. In the above example we used the computation of a classifier
as a particular kind of generalization. Seel also chapter 7

In addition the following concepts have been used:

Object Used for real world physical objects and events as well as for
their representations, e.g. in a feature space.

Feature A characteristic, measurable property of objects useful for rep-
resentation and generalization. Characteristic is meant here as con-
tributing to the distinction of objects of different classes. Features
are sometimes called attributes.

Class A set of objects that, as such, has to be distinguished from other
objects in the problem.

Label Often used as the name of the class to which a particular object
belongs. Sometimes it is just a number, being an index in the list
of names of classes to be distinguished.

Training set The set of objects with known class labels used for com-
puting a classifier.

Test set The set of objects with known class labels used for estimating
the classification error of a trained classifier.
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Design set The total set of objects that is used in designing a recogni-
tion system. Subsets are used training, evaluation or special steps
in the adaptation.

Classifier The final function that distinguishes the classes of interest.

The entire technology of the creation of a recognition system based on
given objects is sometimes referred to as learning from examples.



Chapter 3

Review of PR problems

Here some examples will be given of Pattern Recognition (PR) applica-
tions and the types of data that the analyst in this field may encounter.

3.1 Pattern recognition applications

By its nature PR can be applied in any field in which observations are
studied that can be represented in a numeric way. It is only worthwhile
to use a PR approach if the problems can be formulated as classification
problems: it should be of interest to assign new objects to some class.
Moreover, this problem should not be easily solvable by other means, e.g.
a threshold on a sensor, or a perfectly fitting physical model. Applications
areas of PR are often fields that recently became of interest, or in which
new sensors have been introduced, or that are very complicated. In
such situations a sufficiently useful physical may not be available or is
infeasible. PR may be of help to start an analysis.

In almost all the natural sciences PR techniques are used in one way or
the other. In some of them, e.g. astronomy, chemometrics and taxonomy,
very similar techniques are used under different names. Classification
procedures have here been studied independently and sometimes even
before PR was established as an area of research. In some way the field
of PR as a separate technology became of interest after it was found
that in various disciplines similar problems arose. Various fields with
many researchers continued independently. This might be regretted, but
it has definite its positive sides as thereby different paths are followed
and different solutions are found.

Important application areas to which many PR researchers contribute are
biology, health, medical imaging, psychology, human behavior, ecology,
seismics, space engineering, aeronautics, oceanology, navigation, trans-
port, computer vision and speech. In all these areas new sensors or new
measurement technologies are introduced. Often the possibilities that

14



3.2 Data types 15

arise grow much faster than the possibilities to process, analyze and in-
terpret the generated data.

In addition to these areas of science and engineering, there are various
applications of societal interest, e.g. security, forensics, mail delivery, per-
sonal identification by biometrics, signature verification, fraud detection
and computer crimes. Sometimes similar sensors as in scientific research
are used like photo sensors and microphones, but also entirely different
types of measurements may be used. Examples are text and computer
events.

The common ground between many of these application areas is the
much smaller set of different data types. As far as they are similar,
general procedures can be developed. A review of the main data types
is presented in the next section.

3.2 Data types

Here some common data types are discussed as they are encountered by
an analyst in the PR field studying observations on real world objects.

Independently observed features Features measured by separate sen-
sors, e.g. the weight and size of cars in an application of car type
recognition. It should be emphasized that such features are inde-
pendently measured, but the obtained feature values are not sta-
tistically independent as they involve the same object.

Time signals Sensor outputs observed as a function of time, e.g. speech.
Such data may run continuously with out a clear start or end. If
the signals are properly segmented, e.g. into words, objects can be
aligned: at the same time sample the same phoneme is expected.
Objects can thereby be compared as a function of time.

Spectra Unsegmented time signals can be transformed into spectra by
a Fourier analysis. Time signals of different length may be com-
pared by spectra over the same frequency interval. Examples are
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the recognition of types of earthquakes in seismics and speaker
recognition from audio signals.

Images This is a very common data type. There are various subtypes.
The pixel values can be binary, gray, RGB and even multi-band
(more than three colors) and hyperspectral. In the latter case an
entire spectrum per pixel is measured, like in remote sensing. As for
the time signals, objects in images may be positioned on arbitrary
places, or might be aligned after segmentation. In addition objects
may have different sizes and may be really 2D or just 2D views of
3D objects.

Text For instance newspaper articles to be classified on topic, or letters
to be classified on author.

Symbolic sequences Sequences of symbols, e.g. representing DNA
structures or a series of events in an internet stream.

Graphs Complicated objects like an image of a building can be repre-
sented by a graph: connections between elements and their prop-
erties are used as attributes of nodes and edges.

In advanced applications combinations of such datatypes may arise, e.g.
videos (images as a function of time, combined with sound). Sometimes
one datatype is transformed into another, e.g. a time signal may be
represented as a series of spectra over short time periods, a so-called
spectrogram. This looks like an image, but segmentation might be
needed to locate a specific event. Such an event may be represented by
a some features like time length and the power of some specific features.



Chapter 4

The PR system in operation

A completed pattern recognition system, as we want to design it, may
look like shown in Figure 5. We will discuss the separate elements.

Object to be recognized This object, possibly an event, is a part of
the world outside the recognition system. It has an unknown class
and it is the task of the system to derive this class from its obser-
vations. An example is the heart beat of patient that should be
classified as normal/abnormal.

Sensor This can be a single sensor or a set of sensors. In our example
it may consist of a few electrodes measuring the ECG (electrocar-
diogram) adjusted to the breast of the patient.

Representation The time signals retrieved from the electrodes cannot
be directly used. By segmentation separate heart beats have to
be isolated. Next they should be sampled in a standard way, e.g.
every heart beat should be represented by 256 samples. In this way
an object representation is realized suitable for the classification of
heart beats.

Adaptation The 256 time samples should be adapted to the classifier
found in designing the system. As such they might not yet char-
acterize the differences between normal and abnormal heart beats
sufficiently. Moreover, for some classifiers the number of 256 is too
large. So in this step the initial representation is adapted to a final
one that suits the final step. This may result into a few features.

Figure 5: Pattern recognition system.

17
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Classification Finally, the classifier found during design, takes the fea-
tures as an input and an optimized function maps the features
found for a single heart beat to normal/abnormal. Sometimes a
score between 0 and 1 is returned. They may also be combined
over a series of heart beats.

The two steps called here representation and adaptation are often com-
bined into a single representation step. Often this step is called feature
extraction. We split it here into two, to emphasize that there is a part
that is entirely defined by the designer of the system, independent of the
design set, and a part that is optimized by training the classifier. We
will return on that later in chapter 6



Chapter 5

PR system design

The design of a system as described in the previous chapter is based
on two sources of knowledge. The expertise of the analyst as well as
the application expert (often not the same person) is needed for various
choices like the sensors and the initial signal processing. Also a gross list
of possible useful and measurable features has to be created by these two
persons.

The second source of knowledge is the design set: a set of objects,
preferably drawn at random from the same source as the future objects
to be classified. All or many of these objects should have a known class
label: their true class memberships should be known. They are used for
optimizing the representation (the adaptation of an initial representation
to the demands of the classifier) and for classifier training. Training a
classifier is also an optimization step, but often with a different criterion
than the adaptation.

Usually the design set is stored for an initial representation, chosen on
the basis of the background knowledge of the application. It may be
randomly split into two or three different sets:

Training set This is the set used for adapting the representation (if
needed) and training the classifier. See Figure 6.

Validation set This set is only used for designing advanced systems or
when one wants to validate the choice of an algorithm or classifier.
See Figure 7.

Test set After optimizing the recognition system, its performance is es-
timated by a test set. See Figure 8.

Sometimes the training set is used for validation as well. These sets
serve a similar task: optimizing the recognition system. It should be

19



5.0 PR system design 20

Figure 6: The design set is split at random into different subsets.

Figure 7: The validation set is used for optimizing choices for algorithms and
classifiers.

Figure 8: The test set is used for an evaluation of the final system.

taken into account, however, that after training a classifier with a par-
ticular dataset, the performance measured on the basis of this set might
be treacherously good. Using the training set for evaluation is in general
a bad idea.

More often the test set is used for validation. Consequently the test
set is used multiple times, e.g. for choosing an algorithm for adapting
the representation to the classifier, for choosing a good classifier on the
basis of their performances after training, and finally for reporting the
performance of the entire system to the costumer or supervisor. This
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usage is very common, but formally wrong. Whenever a dataset has been
used for performance estimation, followed by a change of the system in an
attempt to improve it, this dataset has in fact been used for training. The
resulting system is (somewhat) adapted to that dataset and consequently
this dataset cannot be used anymore for an independent evaluation, see
chapter 8.

The ultimate consequence of this reasoning is that a test set can only be
used once. In practise this is usually prohibitive as the available dataset
will be limited in size. System designers usually prefer to use all available
data for optimizing the system and take it for granted that their final
performance estimate is biased.



Chapter 6

Representation

6.1 Object representation

The task of the representation step is to make objects numerically com-
parable. If x and y are the representations of two objects then it should
be possible to compute dxy = D(x, y) in which D is some distance mea-
sure and dxy is a scalar reflecting the difference between x and y. For
simple sensors or for an advanced definition of D no additional represen-
tation is needed. Otherwise, the sensor outputs have to be transformed
into a representation for which distance functions are available. Some
examples:

Graphs, a structural representation build by nodes and edges. An
example is the graph representation of images by segments (nodes)
with connections (the graph edges) to neighboring segments. The
computation of graph distances is not trivial, especially not if the
nodes or edges have attributes.

Symbolic sequence, a structural representation by a sequence of sym-
bols, like text or a DNA sequence.

Sampled domain, like images and time signals. In order to compute
distances between images or between time signals is it advantageous
if they all have the same size.

Features, a set of relevant object properties. The same features have
to be measured for all objects in order to make the comparable.

The structural representation will not be further discussed here. On the
basis of computed distances between structures a so-called dissimilarity
representation can be built, see below.

22
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Objects given as images or time signals may need further processing
before they can constitute a proper initial representation. Here are some
possibilities:

Segmentation This is of interest for images and time signals. All pixels
or time samples outside the domain of interest should be removed.
After that the object representations have different sizes and cannot
easily be compared directly. So segmentation is often followed by
the computation of features of the segments.

Scaling For objects observed under possible different circumstances (e.g.
light conditions) it is necessary to adjust the amplitudes properly.
The best way to do this is application dependent. Possibilities
are to multiply the entire signal such that their means or maxima
are equal (e.g. divide by such a number by which it becomes one).
Time signals like speech may be better normalized on their standard
deviation (or mean amplitudes). For some sensors it is needed that
minima (zero level) become equal.

Centering In case objects have some samples around them that do not
belong to the objects themselves, they should be positioned such
that they can be compared pixel wise (sample by sample). The
best way to do this is by centering as the object borders are not
always well defined.

Resampling Depending on the next steps it may be needed that objects
are represented by the same numbers of samples.

Rotation For many objects in images their rotation is not important
for recognition. In order to make an efficient comparison a stan-
dard rotated view may be used. Sometimes it is needed to put
restrictions to such a rotation, e.g. to avoid that de digits ’6’ and
’9’ become equal.

Normalization All the above and possible others are sometimes re-
ferred to as object normalization.
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Object properties that are not relevant for class differences are named
invariants. Examples may be position in an image or size. In the design
of a pattern recognition system they should be removed if possible. Dur-
ing training of a recognition system the insignificance of such properties
may be discovered automatically, but this requires a training set that is
sufficiently large. It is thereby more efficient to remove them. The above
normalization steps may take care of some of them.

6.2 Vector representations

A very common, almost ’standard’ representation is the vector space. All
objects are represented by vectors having the same length and using the
same set of properties as their elements. The scatter plot in Figure 3
is an example of a 2-dimensional vector representation. Usually vector
spaces have higher dimensionality, from tens to possibly over 1000.

The popularity of the vector representation is caused by the availabil-
ity of many tools for analyzing sets of vectors. Classes may be studied
by computing their densities, estimated from the training set. Classifiers
in a k-dimensional vector space are (k-1)-dimensional linear or nonlinear
surfaces separating class regions in the space. The data (sets of objects)
may be found to lie (which sufficient accuracy) in a linear or nonlinear
subspace of possibly much lower dimensionality, from which it can be
concluded that the relevant features describing the object variability are
a (non)linear function of the used object properties.

Multi-variate statistics, linear vector algebra and matrix manipulation
are important tools to study vector representations. We will summarize
three ways to arrive at such a representation.

Feature representation The space built by the possibly relevant ob-
ject properties is called the feature space. They may be derived
from images or time signals according to some preprocessing, but
they may also be measured directly by a dedicated sensor, e.g. a
temperature. As features can be based on entirely different physi-
cal phenomena, their scaling may be different as well. Normalizing
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their variabilities as discussed in section 6.1 may be needed to avoid
not-intended build-in preferences for some features.

It should be emphasized that the feature representation is reducing:
some object differences are not taken into account. Consequently
different objects can have the same representations in the feature
space. If this happens for objects of different classes, the classes
overlap. Classifiers may then be built on the basis of class density
estimators.

Pixel representation In case it is not clear what features should be de-
fined, one may try to sample the images or time signals by which the
objects are given. The normalization steps discussed in section 6.1
are now relevant. In particulary it is necessary that all object rep-
resentations have the same size in pixels or samples. Moreover,
alignment by shifting and rotation may be needed as well.

If the images of all objects have the same number of pixels, an im-
age, and thereby the objects, can be represented in a vector space.
It has as many dimensions as the image has pixels. An example is
the MNIST dataset, a heavily used benchmark consisting of 70000
images of 28x28 pixels. These are gray value images. The pixel
representation is thereby 784. If color (RGB) images are used like
this, the dimensionality would be three times larger.

Instead of images, samplings of time signals or spectra may be
used in the same fashion. In these cases time samples or frequency
amplitudes are used instead of pixel intensities to build the vector
space. Spectra are usually already automatically aligned (same fre-
quencies have the same meaning). They thereby constitute a more
simple example of a pixel representation than images. (Although
time samples and frequencies are not pixels, still ’pixel representa-
tion’ is sometimes used for lack of something better).

In case objects are entirely defined by their image (e.g. 2D objects)
or time signal (e.g. speech), an automatic recognition system gets
the same information as a human observer. It may thereby reach
the same or even a better performance. If human recognition is
error free, or class labels are assigned in a consistent way by the
human expert, classes will not overlap in a pixel space.
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Dissimilarity representation The good aspect of the pixel represen-
tation is that any, by the sensors observed object change, is reflected
in the representation. A severe drawback is that neighboring pixels
are expected to be highly correlated. In the representation, how-
ever, their relation is similar to the relation of two remote pixels.
The entire object is teared into pieces, which are used indepen-
dently for representation. Neighborhood relations are lost.

The dissimilarity representation tries to do both, be sensitive
for all object differences, but treat neighboring pixels different than
remote pixels. The application expert is asked to design a dissim-
ilarity measure dxy = D(x, y) between objects such that this is
realized. Examples are the Hausdorff distance between shapes and
the Earthmover distance between spectra. Next a set of prototype
objects P = pi, i = 1, . . . , k has to be defined, called the repre-
sentation set. Any object x is now represented by a vector of
distances d to the representation set: d = (D(x, p1), . . . , D(x, pk)).
This constitutes the dissimilarity space.

Any distance measure between objects can be used for this repre-
sentation. Preferably they should have the above discussed proper-
ties. Other choices appear sometimes to perform surprisingly well,
including the Euclidean distance in feature spaces and pixel spaces.
An explanation for this is that such a dissimilarity space is a non-
linear transformation of the original space. Consequently, simple
linear classifiers in the dissimilarity space correspond to non-linear
classifiers in the original representation space. The non-linearity
used for this is not arbitrary, but is in some way natural for the
given original representation.

There is another way than the dissimilarity space to arrive at a
vector space from dissimilarities. That is embedding: finding a
vector space in which the distances are equal to the given dissimilar-
ities. In general such a space is non-Euclidean as it cannot always
be based on an Euclidean geometry. In such cases it cannot
easily be used for generalization.
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The feature space is traditionally the main representation. The vec-
tor spaces resulting from the pixel representation and the dissimilarity
representation are formally not feature spaces as their bases are just in-
directly constituted by object properties. It is very common, however, to
use ”feature space” in referring to a pixel space or a dissimilarity space.

6.3 Dimension reduction

Generalization procedures like classifiers sometimes heavily focus on their
performance on the training set. If this set is small in relation to the
dimensionality of the feature space they may overtrain, i.e. they adapt
more to the local noise than to the global class differences as a result
of the curse of dimensionality. To avoid this, separate dimension
reduction procedures are used. There are two different approaches:

Feature extraction finds combinations (often linear) of the given fea-
tures such that the class separability is maintained as good as
possible. Criteria are usually not classification performance (as
this will introduce overtraining again), but general measures of the
preserved information content.

Feature selection is more restrictive as it selects features instead of
searching for good combinations. Selection may be preferred over
extraction as the final feature representation is here in terms of
a reduced set of original features. This may give more insight in
what is important for recognition. Moreover, sensors related to
not-selected features may be removed.

Note that by both approaches a subspace of the original feature space
is found. Class separability will reduce or, at best, remain equal. It is
impossible that it will increase. However, classifiers may have a more
easy job by which the final performance increases.

The most important algorithms for reduction and selection are:



6.3 Dimension reduction 28

Principal Component Analysis (PCA) is an unsupervised approach
(not using class labels of the training set) for linear feature extrac-
tion. It maximizes the explained variance.

Linear Discriminant Analysis (LDA), also named Fisher Mapping,
is a supervised approach (using class labels of the training set)
for linear feature extraction. It maximizes the between scatter
(differences in class means) over the within scatter (object differ-
ences within a class, averaged over the classes).

Individual selection takes the best features according to their individ-
ual performance.

Forward selection starts with the best single feature and extends the
selection iteratively with the feature that maximizes the perfor-
mance of the selected set.

Backward selection starts with all features and reduces the selection
iteratively with the feature that least reduces the performance of
the selected set.

There are more advanced selection algorithms like branch and bound
and floating search. They only make sense for large training sets as
extended searches bear the danger of overtraining. Moreover, they are
very time consuming. Also the backward selection, mentioned above, has
to be treated with care as it starts with measuring the performance of all
features. This is already tricky when feature selection is done because of
a too large dimensionality of the space.

If one has a much too large feature set w.r.t. the training set size, e.g.
1000 to be reduced to 10, a feasible approach might be:

1. Select by individual selection 50 features.

2. Select by forward selection 20 out of these 50.

3. Select by backward selection 10 out of 20.
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Several criteria are possible in feature selection. They can be divided in
filter and wrapper approaches. In filter approaches a global separability
criterion is used like the Mahalanobis distance. This is comparable to
LDA in feature extraction.

In the wrapper approach a classifier is used and its performance used as
a criterion. As training has to be repeated for all steps this can be very
time consuming. Moreover, it is needed to have a separate test set for
measuring the performance. Even more advanced and time consuming is
to do cross-validation, see section 8.1. Although wrapper approaches are
popular in the literature, there is again the danger of overtraining caused
by the repeated use of a test set. It may be used thousands of times and
starts thereby to become a training set.

For the selection and optimization of representations various criteria are
used, but there is no such thing as a ’ground truth’. However, at the end
a representation is as good as the generalization that can be based on it.
We discuss here no specific procedures for the evaluation of representa-
tions and just refer to the evaluation chapter 8.



Chapter 7

Generalization

7.1 Class models or decision functions

Once we have a proper representation, it can be used for learning from
examples procedures. Such procedure estimates an unknown property
of an object given a set of example objects for which the property is
known. This is also called generalization. It is based on the assumption
that some properties are heavily dependent on others. Thereby it is not
needed to observe them directly. They can be indirectly determined from
other observations.

In PR generalization is mainly used to find the class of an object. This is
particulary of interest when there is no measurement possible that reveals
the class and only a human expert is able to name it. For example,
there is no single measurable property that determines that a chair is
a chair. It can only be established in an automatic way from a set of
measurable properties. A set of examples of known chairs, collected by
a human expert, in this context often called the teacher, has to be used
for training a generalization algorithm, e.g. a classifier. This results
into a trained classifier which is a function of measurable properties.
Depending on the outcome of this function a new object may be classified
as a chair.

Here some ways will be discussed to find classifiers for objects represented
in a vector space. Such a classifier determines from the set of labeled
object examples, the training set, for every other point in the vector
space what its label might be. (A labeled object is an object with
known class membership). The output of a classifier might be a unique
crisp label, a set of possible labels, or for all or the main classes a
confidence.

A classification confidence is a number between 0 and 1. The larger
the more likely the related class. As an extreme objects are sometimes
rejected. This implies that for the supplied representation vector of the
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object to be classified not sufficient information is available to make any
sensible decision. Most classifiers don’t have an explicit reject option,
but from thresholds on confidences rejects may be decided.

There are two opposite approaches from which classifiers can be built.

Class models For each class a model is build using objects of that class
only, usually a probability density function. The procedures for the
estimation of density functions can be distinguished in para-
metric and non-parametric approaches. By parametric estima-
tion the parameters of some standard function are estimated, e.g.
the mean and covariance matrix a normal distribution(also
called Gaussian distribution). Non-parametric estimators,
like the Parzen density estimator, replace every sample by elemen-
tary function, also called kernel, and average them.

As a result of the density estimation for every point in the vec-
tor space a distance or a confidence for that class will be found,
independent of possible other classes. So this is a class-by-class
approach. The advantage of this approach is that if classes have
known prior probabilities (class frequencies of objects to be clas-
sified), these can be used to weight the models.

Decision functions In this case objects of different classes are used si-
multaneously for a direct estimate of the decision function between
the classes. Decision functions often act between two classes or
between groups of classes (so called binary classification prob-
lems). In case of more than two classes (multi-class classifica-
tion problems) they can be used in two fashions: one-against-
one and one-against-rest. In the first case classifiers are found
for all pairs of classes. In the second each classifier tries to separate
a single class form all other. In both cases a second level of decision
making has to be defined for a final classification.

Some decision functions, e.g. the ones based on neural networks,
directly implement a multi-class classifier.

The advantage of the decision function approach is that just is
estimated what is needed. Directly training a decision function is
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more efficient than the detour over estimating full class models. A
disadvantage is that the use of class prior probabilities is for this
approach difficult, tricky or impossible.

7.2 Classifiers

Here the most important classifiers are shortly summarized.

Template matching A few representative objects (prototypes) are
selected by the teacher, at least one per class. Classification is done
by assigning the class of the nearest to the object to be classified.

Nearest mean This is like template matching. There is now a single
prototype per class which is defined as the mean of all training
objects available for that class.

1-Nearest neighbor This is also like template matching, but now all
available training objects are used as prototypes.

Fisher classifier This is a two-class classifier (discriminant). It is de-
fined as the plane perpendicular to the direction in feature space
that maximizes the between scatter over the within scatter, see
LDA. It is also known as Fisher’s Linear Discriminant (FLD).
In case of equal class priors it is almost identical to the Bayes nor-
mal classifier assuming equal covariances.

Bayes classifier This classifier selects the class with the highest poste-
rior probability, determined by the class densities and the class
priors. This is the minimum error classifier (the error it realizes
is sometimes called Bayes error). Usually densities are unknown
and should be estimated. See Bayes normal and Parzen below.

Bayes normal The Bayes classifier assuming normal distributions for
all classes. If the class covariance matrices are assumed to be
equal the classifier is linear (almost identical to LDA), otherwise
quadratic (QDA).
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Parzen classifier The Parzen classifier is a Bayes classifier using a
kernel density estimator for the class distributions. Depending on
the implementation the same or different kernels are used for the
classes. The choice of the kernel function is usually a spherical
normal distribution. Its width should be optimized or chosen by
the teacher.

k-Nearest neighbor (kNN) The k-Nearest neighbor classifier selects
the majority class of the k-nearest neighbors in the training set.

Naive Bayes This is another Bayes classifier based on estimated den-
sities, now assuming independent features. Thereby class densities
are estimated by multiplying feature density estimates. The latter
can be based on histograms, Parzen densities, normal distributions,
etcetera.

Decision tree Usually a binary decision tree is used in which the nodes
are single featurethresholds. During training for every node the
next best featureis selected for the part of the training set that
arrives in the given node. There are various criteria and stopping
strategies.

Neural network Originally neural networks are studied as a simula-
tion of the human nervous system. Later they are used as well for
building artificial recognition systems. This resulted in a large set
of architectures with very different properties. Consequently, the
performance of a neural network classifier heavily depends on the
choices made by the analyst, and thereby on his skills. The main
properties of neural network classifiers are that they can be trained
by very large datasets, training is computationally demanding, the
classification function is usually nonlinear and results can be rea-
sonably good.

Support vector machine (SVM) The SVM is in the research com-
munities of machine learning and pattern recognition a very fre-
quently applied and studied classifier. It is based on a solid theoret-
ical foundation called Empirical Risk Minimization (ERM) which
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aims to maximize the distances of the training objects to the clas-
sifier. Originally it is designed for linear decision functions, but by
the use of kernels and the so-called kernel trick also non-linear
functions can be computed.

Adaboost This classifier is based on combining a large set of simple,
usually linear, weak classifiers, resulting in a complex, nonlin-
ear architecture. Iteratively additional base classifiers are added
emphasizing difficult (often erroneously classified) objects in the
training set. (A base classifier is one of the constituting classi-
fiers in a combined classifier)

Random decision forest Also this classifier combines many simple base
base classifiers, in this case decision trees with just a few nodes
based on randomly selected features.

The bottom five classifiers in the above list have many adjustable param-
eters to be set by the user. Finding the best values is challenging. A well
known approach is a so-called grid search: systematically a large set of
parameter combinations is evaluated, often by cross-validation. There is
a high risk of overtraining.



Chapter 8

Evaluation

Evaluation is an essential aspect of the design of pattern recognition
systems. Every choice, every training step, as well as the overall set-up
are guided by expectations resulting from past experience or estimates
of the realized accuracy. Without evaluation there is no learning. It is
thereby crucial to have proper procedures, but also to be aware of the
general behavior of the performance as a function of training set size and
dimensionality.

In the next sections short reviews are given of error estimation proce-
dures, section 8.1, the error as a function of the size of the training set
(learning curves), section 8.2, and the dimensionality (feature curves),
section 8.3. Finally some general considerations and guidelines for the
accuracy are presented, section 8.4.

8.1 Error estimation

The classification error can be estimated by counting the number of
erroneous classifications made in a set of objects with known true class
labels (a test set). This set should be representative for the future
objects to be classified. Usually this is realized by random sampling.
The objects are thereby i.i.d. (independent and identically distributed)
random variables. The fraction of errors, the test error, is in that case
an unbiased estimate of the expected classification error.

This error estimation procedure (testing) can be performed over the
set of classes or class-by-class and weighted with the probabilities of
encountering objects of a particular class, the class priors. This should
be done when the class frequencies in the available set of objects are
different from the known, true class prior probabilities.

The objects in the training set are not independent from the classifier to
be tested. Formally they should not be used. It is expected the they will
result in an optimistically biased error estimate. However, the training
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set error, also called apparent error or resubstitution error, can be
informative in comparison with the true error (the error for an infinite
independent test set), estimated by the available test set. The difference
is a measure for the bias, and thereby for overtraining. The larger,
the more the classifier has been adapted to the noise in the training set,
instead of the class differences.

An independent test set is needed for an unbiased estimate of the true
classification error. To get its variance as small as possible the size of
the test set should be as large as possible. Larger test sets, however, will
result in smaller training sets, as they are subsets of the same design
set. This results in worse classifiers. Thereby, there is a trade-off between
very accurate estimates of the performance of a bad classifier (large test
sets, small training sets), and inaccurate estimates of the performance of
a good classifier (small test sets, large training sets).

A common compromise for the above dilemma is a 50-50 split of the
design set in equal parts for training sets and for testing. The final
classifier, delivered to the customer, will be trained on the entire design
set. The performance of a classifier trained by a dataset half of this
size will not be very much worse. This is the hold-out error, which is
slightly pessimistic.

The roles of test set and training set in a 50-50 split may be reversed and
the results averaged. This is called 2-fold cross-validation. The entire
design set participates in testing by which the variance in the resulting
estimate in comparison with the hold-out procedure is reduced. It is,
however, equally pessimistic as it estimates an error of a classifier that is
trained by just 50% of the data used for the final classifier.

Instead of 2-fold cross-validation also n-fold cross-validation can be
used by a rotation procedure. In this approach n classifiers are trained
by a fraction of (n− 1)/n of the design set and tested by the remaining
objects, a fraction of 1/n of the design set. Again, all objects are used for
testing, but they test classifiers that are very close to the final classifier.
They are more similar to each other as well as to the final classifier
for larger values of n. The variance is thereby smaller (classifiers are
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more equal) and the estimate is even less pessimistic. The cost of this
procedure is that training times are increased by a factor of n. Common
choices for n are n = 5 and n = 10.

The n classifiers, based on random subsets of a (n− 1)/n fraction of the
design set, are all somewhat different. A repetition of the cross-validation
will generate another set of n classifiers. Averaging the performances of
a number (e.g. 10) of repeated n-fold cross-validations will yield a
somewhat more accurate estimate the classification error. The variance
in the performance results can be used to test whether differences between
classifiers are significant.

A special case is the leave-one-out cross-validation (LOO). It uses
as many folds as the size of the design set. Every classifier is trained
by all-but-one objects in the design set and is tested by just the single
object that was left out. In this case makes no sense as it would generate
the same result. The tested classifiers are all almost equal to the final
one. Consequently the estimated error, usually called the LOO-error
has a minimum pessimistic bias.

8.2 Learning curves

Here we discuss why plotting and analyzing learning curves may reveal
some interesting characteristics of classifiers. A learning curve shows
the performance or classification error of a classifier as a function of
the size of the training set. As the error has to be estimated from an
independent test set it can not be studied up to the size of the design
set.

In Figure 9 on example is given based on the Iris dataset, a 3-class dataset
(different types of the Iris flower) with 50 objects per class, given by 4
features. Random subsets of 2-40 objects per class are used for training,
the remaining ones for testing. This is repeated 100 times to get smooth
results.

The plot shows the averaged estimates of the error on the test set as
well as on the training set, the so called apparent error. The test error
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Figure 9: Learning curve of Bayes Normal for the Iris dataset. The error
curve for the test set is shown as well (apparent error).

approaches some asymptotic value. It can be observed that this value
has not been reached yet as the curve still goes down. Enlarging the
dataset is thereby expected to yield better results.

Figure 10: Learning curves for the Iris dataset.

http://37steps.com/exam/lcurves/
http://37steps.com/exam/lcurves/
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The apparent error reaches a minimum for 6 training objects per class.
For less objects no proper normal distributionscan be estimated. For
increasing sample sizes after 6 objects per class the classifier better and
better generalizes as the estimated distributions approach the real distri-
butions. It is expected that the two curves approach the same asymptotic
value. The test error from above, the apparent error from below.. The
difference between the two errors can be understood as the amount of
overtraining. It is caused by the adaptationadaptation of the classifier
to the noise in the data (caused by small datasets) instead of to the true
class distributions.

In Figure 10 the learning curves for three classifiers are shown. The
differ in complexity. A general tendency of such curves is that low-
complexity classifiers do relatively well for small training sets, while that
high-complexity classifiers need large training sets. It can be seen that the
most simple classifier, the nearest mean, shows a reasonable performance
for just a few training objects, while the most complex classifier, Bayes
Normal, at moment suffers from the noise in the data. Because of its
complexity it is sensitive for noise, but for large training sets its sensitivity
can well be used to shape a good decision function.

This scissor phenomenon is very characteristic for classifiers with a differ-
ent complexity. It shows that there is no unique best classifier for some
problems, but that it depends on the size of the training set.

8.3 Feature curves

The behavior of the classifier performance as a function of the dimen-
sionality is significant for selecting features and their number. Feature
curves show an estimate of the true classification error as a function of
the number of features. In Figure 11 and Figure 12 some example are
given based on the Bayes normal classifier.

For classifiers trained by a small training set, feature curves may show
a minimum for a low number of features. This shows overtraining for
larger dimensionalities, see the sections on dimension reduction 6.3 and
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Figure 11: Satellite dataset feature curves, optimized order.

Figure 12: Satellite dataset feature curves, random order.

error estimations 8.1. The larger the training set, the more features can
be used.

The result depends on the order of the features. In Figure 11 the fea-
tures are ranked according to a forward selection procedure based on the
Mahalanobis distance. In Figure 12 features are randomly ordered.

http://37steps.com/exam/fcurves/
http://37steps.com/exam/fcurves/
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The dataset has 36 features of which most are uninformative. Conse-
quently, in a random order many uninformative features may be used in
the beginning. After 8 features it is almost sure that the most significant
features (or very similar copies) are included.

8.4 Accuracy guidelines

8.4.1 The number of features.

From the discussions on the evaluation in chapter 8 it is clear that there
is a relation between training set size and feature size: the more fea-
tures are added, the larger the training set should be to obtain a similar
accuracy for the trained result. This holds for the increasing number
of parameters involved in the classifier. The added features, however,
might be informative, so in spite of the increasing noise in the parameter
estimates, the classifier error may still decrease. The optimal number
of features for a given size of the training set thereby depends on the
separability added by the new features. The sensitivity for the noise in
the data also depends on the characteristics of the chosen classifier.

Consequently, there is no general rule for the number of features, unless
their distribution, the size of the training set and the chosen classifier are
specified.

8.4.2 The size of the training set

By studying the learning curves it can be concluded that in expectation
the more training objects the better, but that at some moment this will
hardly help for the given representation and classifier. When the appar-
ent error is close the test error the asymptotic value is reached. As the
asymptotic behavior is exponential a very rough rule of thumb is that by
doubling the training set size not more will be gained in accuracy than
the difference with the error at half the present size.

Classifiers that are based on covariances need at least more objects than
features for estimating a non-singular matrix that can be inverted, oth-
erwise a proper regularization is needed. Classifiers that are based
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on density estimation need to fill the space. As a rule of thumb it is
sometimes stated that training sets of 5-10 times the dimensionality are
needed. This holds per class as the densities are computed class-wise.
However, it appears that with some some regularization for much less
samples reasonable results may be obtained.

8.4.3 The size of the test set

Here clear answers are possible. If one estimates an error with true value
ε, based on an independent randomly selected (i.i.d) test set of size n,
then the standard deviation of the estimate is

√
ε× (1− ε)/n. If one

likes to have this smaller than (e.g.) 0.1ε it directly follows for small ε
that n > 100/ε.

This result is for some problems shocking. In case ε = 0.1 a test set of
size n = 1000 is needed to estimate the error with a standard deviation of
0.01. This result in a 95% confidence interval of about 0.08 < ε < 0.12,
which is not very accurate. A test set of 1000 objects, however, is for
many applications very large.



Chapter 9

Exploratory data analysis

The final target of pattern recognition is to design a system that, by
the two steps of representation and generalization, is able to correctly
classify new objects with a sufficient accuracy. There are well defined
evaluation tools to predict or measure the obtained performance. In its
design, however, some additional knowledge of the data characteristics
may be helpful to select and adjust the appropriate procedure. In this
chapter some approaches are discussed that may be helpful for this.

9.1 Cluster analysis

In cluster analysis a grouping of the objects is studied without using
class information supplied by the teacher. It is thereby an unsupervised
learning technique (like PCA). The target is to find clusters: subgroups
of similar objects in a given set of objects. We consider two types of
representations, vector spaces and dissimilarities.

Generalization is not necessarily the target of cluster analysis. However,
it may be followed by the computation of a classifier to assign new ob-
jects to one of the detected clusters. Here we will restrain to possible
clustering procedures.

Like for classification, distances and densities play an important role in
the design of clustering procedures. There are three kinds of approaches.
For each of them the main algorithms will be shortly characterized.

9.1.1 Hierarchical techniques

These are characterized by the construction of a hierarchy of clusters. On
the lowest level every object is defined as a separate cluster. On every
level above that the two nearest clusters are merged, until in the top level
all objects are collected into a single cluster. The various techniques differ
in the way the distance between two clusters is defined. The three main
distance definitions are:
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Single linkage: the distance between two clusters is the minimum dis-
tance between any two objects of the two clusters.

Complete linkage: the distance between two clusters is the maximum
distance between any two objects of the two clusters.

Average linkage: the distance between two clusters is the average dis-
tance of all distances between two objects of the two clusters. This
is different but might be similar as the distance between the cluster
means of the objects are given by a vector representation.

These approaches can be used for objects given by a dissimilarity repre-
sentation as well as by a vector representation. In the latter case object
distances are usually defined by the Euclidean metric.

The entire hierarchy can be represented by a dendrogram: a graph tree
in which every node represents the merge of two clusters and the size
of the edges is determined by the distance between the corresponding
clusters. The dendrogram is used to determine an appropriate cluster
level and to find outlier objects that do not belong to any cluster. This
post-analysis determines the number of clusters that is found.

9.1.2 Partitional techniques

These techniques are based on a desired number of clusters. They start
from some initial clustering, which might be random. In an iterative
procedure the clustering is implicitly or explicitly optimized according to
some procedure. Some well known algorithms are:

k-Means: In every iteration a new clustering is defined by assigning
all objects to the nearest cluster mean derived from the previous
clustering.

k-Centers: This is also called k-Medians. In every iteration a new clus-
tering is defined by assigning all objects to the nearest cluster center
derived from the previous clustering. The centra of a cluster is the
object in the cluster for which the distance to the most remote
object in the cluster is minimum.
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EM clustering: Expectation-Maximization clustering. This is in fact
a generalization of the above procedures. In every iteration a new
clustering is defined by assigning all objects to the cluster to which
it fits best according to a model describing the clusters. These
models are derived from the previous clustering. A well known
option for these models is the normal distributions. In PRTools an
arbitrary classifier can be used.

9.1.3 Mode seeking

In the mode seeking strategy clusters correspond to the modes (local
maxima) of the density function. Objects are assigned to the cluster of
the mode that is found by following the density gradient upwards. The
two main procedures are based on the non-parametric density estimates
based on kernels and nearest neighbors. In both cases there is width
parameter that influences the smoothness of the density estimate and
thereby the number of modes and the number of clusters.

Mean shift: This procedure is based on Parzen density estimates. The
modes are found by following the gradient from a number of start
points (objects). This is time consuming and mainly feasible in for
lower dimensional vector spaces.

k-NN mode seeking: In the k-NN approach densities are related to
the distance to the k-th neighbor. Pointers are set from all objects
to the object with the highest density in their neighborhood. Fol-
lowing pointers is fast and modes are uniquely defined (objects that
point to themselves).

The mean shift algorithm requires less objects than k-NN mode seeking
and is frequently used for color image segmentation. k-NN mode seeking
has no restrictions for the dimensionality and can be applied to very large
datasets by two steps in which the distances of all objects to all other
objects have to be computed.
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9.2 Visualization

Visualization tools may give the analyst some insight into the set of
objects under study. This can be helpful to select an appropriate strategy
for representation or generalization. Here three types of tools are shortly
summarizes,

9.2.1 Scatterplots

Multi-dimensional data can be visualized by 2D or pseudo-3D projec-
tions. It has to be realized that if the intrinsic dimension is high many
objects may be shown close to each other in the projection, but that have
very large distances. Three well-known techniques for linear projection
are:

PCA: Principal component analysis finds, by an eigenvalue decom-
position of the covariance matrix, the linear subspace that shows
the largest variances.

LDA: Linear discriminant analysis or Fisher mapping shows the sub-
space in which the between scatter (the variances of the class means)
is optimized with respect to the within scatter (the variances within
the classes).

KLT: Karhunen-Loeve transform is sometimes used as an alternative
name for PCA. Sometimes it is distinguished from that by com-
puting an eigenvalue decomposition of the average of the class co-
variance matrices. It thereby computes the linear subspace that
shows the largest within scatter.

It is likely that in high-dimensional datasets objects are in a lower-
dimensional non-linear subspace. Three popular techniques for finding
nonlinear mappings are:

MDS: Multi-dimensional scaling is a general, classical procedure that
aims to create a low-dimensional vector subspace in which the
objects are positioned such that some measure for the difference
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between the original and realized distances (called the stress) is
minimized.

KPCA Kernel PCA. This is a kernelized version of PCA. The non-
linearity is determined by the choice of the kernel.

tSNE A recent procedure called t-distributed stochastic neighbor em-
bedding. Like the other procedures similar objects are modeled by
nearby points and dissimilar objects are modeled by distant points
in the scatter plot. In this case there is, however, a high emphasis
on the first. The criterion used here is to minimize the Kullback-
Leibler divergence between the original and realized distributions
of objects distances.

9.2.2 Graph trees

Somewhat more general than a scatter plot of a (non-linear) subspace is
to show relations between objects is a graph. The nodes are the objects
and the edges show something of their relations. A graph tree is an
undirected graph in which any two nodes are connected by exactly one
path. Some examples:

Decision tree: This is a visual representation of the Decision Tree
classifier mentioned in section 7.2. Every node is based on a sub-
set of the original training set. The top node contains the entire
set. At every node the subset is split (using some simple classi-
fier, often a threshold on a feature) into some subsets. When the
subsets are (sufficiently) homogeneous the node is not split further
and a class label is assigned to such an end node. An original vec-
tor representation is hereby implicitly split into a number of cells
containing (almost entirely) training objects of the same class.

Dendrogram: A dendrogram shows by a graph tree the result of a
hierarchical clustering. The structure is similar to the decision
tree. A top node contains all objects. The end nodes are the basic
clusters or the individual objects. The edges combine the nodes
hierarchically.
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MST In a Minimum Spanning Tree all objects are a node and the edges
represent their distances. The spanning of such a graph tree is the
sum of all distances that are represented by an edge. The MST is
the tree with the minimum spanning. It is the result of the single
linkage hierarchical clustering is by that procedure sequentially the
clusters of the two most neighboring objects in different clusters
are connected.

9.2.3 Curves

Various function can be plotted to characterize some properties of a (la-
beled) dataset. Here are some of the main ones.

Eigenspectra: The spectrum of a covariance matrix is the set of its
eigenvalues. With the not so often used word eigenspectrum
we point to the curve that plots the ranked eigenvalues. It shows
graphically how many eigenvectors are significant, which is the di-
mensionality of the linear subspace in which most of the variability
is concentrated. The cumulative eigenspectrum may show this even
more clearly, e.g. for what dimensionality 95% of the total variance
(the sum of all eigenvalues) is reached.

Density plots: Plots of a two-dimensional probability density distribu-
tion can be shown by equal-density curves in a scatter plot. The
density plot of a single feature is usually shown as a function (the
density) along a feature axis. Multiple curves in the same plot may
be used to study densities of different classes, showing the class
separability of that feature.

Learning curves: These show some performance measure (e.g. the
classification error) as a function of the size of the training set,
see section 8.2.

Feature curves: These show some performance measure (e.g. the clas-
sification error) as a function of the dimensionality, see section 8.3.



Chapter 10

Glossary

This chapter summarizes the terminology as it is used in the previous
chapters. Some additional terms are included as well. Almost all occur-
rences of the terms in the book, including the ones in this chapter, are
linked to the corresponding glossary entry. The headings of the glossary
entry are linked backward to the most significant place in the main text.

At the end the description of every glossary entry backward links are
provided to pages, chapters and sections. In addition, external links are
given to papers, Wikipedia entries, tutorials, video’s and other internet
locations. A browser is needed to support this. For a number of entries,
also links are supplied to Matlab examples written by PRTools.

Adaboost An advanced combined classifier based on sequentially gen-
erating a large set of weak classifiers emphasizing training objects
that are often incorrectly classified by one of these (boosting). page-
34 wiki tutorial paper video example

Adaptation This is not a specific pattern recognition term. It is used
here for the step by which the representation is optimized for the
generalization, e.g. for classification. page-12 page-17

Apparent error Also called resubstitution error or training error. It is
the fraction of objects used for designing (training) a classifier that
is incorrectly classified by that classifier. It is usually a positively
biased estimator of the true classification error. page-35 example

Attribute A symbolic or numeric property of an object that might be
useful to determine its class. The word feature is used for this
as well. Different objects however may have different numbers of
attributes. Usually, the same set of features is measured for all
objects in a single problem. Thereby, objects can be represented
by a feature vector, or by a set of attributes. page-12

Backward search See backward selection.
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http://en.wikipedia.org/wiki/AdaBoost
http://web.engr.illinois.edu/~dhoiem/presentations/Adaboost_Tutorial.ppt
https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf
https://www.youtube.com/watch?v=ix6IvwbVpw0
http://37steps.com/exam/adaboost_ex/
http://37steps.com/exam/apperror/
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Backward selection The selection of features or prototypes on the ba-
sis of the performance decrease after removal from an already se-
lected set. The selection is usually started with a large set of best
performing individuals, or with the entire available set. See also
feature selection. page-28 example example

Base classifier One of the constituting classifiers in a combined classi-
fier like adaboost or a random forest. See also ensemble classifier.
example

Bayes classifier This is a classifier based on the Bayes rule. It combines
given class prior probabilities P (ω) with class probability densities
P (x|ω) for the object vector representation x such that the classi-
fication error ε is minimum under the assumption that these prob-
abilities and densities hold for the objects to be classified. If this
assumption is violated (e.g. by using bad density estimates) the
classifier may be far from optimal.

For a two-class problem with ω ∈ A,B this classifier can be written
as:

S(x) = P (x|A)P (A)− P (x|B)P (B),

if S(x) > 0 then A else B

For a multi-class problem with classes ω ∈ Ω the classifier a more
general formulation is:

ω̂(x) = argmaxω∈Ω{P (x|ω)P (ω)P (x)}

As the denominator P (x) does not depend on ω, it can be omitted.
The rule thereby simplifies to:

ω̂(x) = argmaxω∈Ω{P (x|ω)P (ω)}

page-32 wiki example

Bayes normal classifier The Bayes classifier using density estimates
based on the training set assuming normal distributions. The result
is either a quadratic classifier (different covariance matrices), also
named QDA, or a linear classifier (equal covariance matrices), also
named LDA. page-32 tutorial example

http://37steps.com/exam/featsel_ex1/
http://37steps.com/exam/featsel_ex2/
http://37steps.com/exam/adaboost_ex/
http://en.wikipedia.org/wiki/Bayes_classifier
http://www.37steps.com/exam/bayes_classifier/
http://www.autonlab.org/tutorials/gaussbc12.pdf
http://www.37steps.com/exam/bayes_classifier/
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Bayes error The classification error made by the Bayes classifier for
the case its assumptions are correct. By definition this is the lowest
classification error that can be achieved for the given problem.page-
32 tutorial wiki example

Bayes rule For a class ω and an object representation vector x, this
rule relates the class posterior probability P (ω|x) with the class
probability density P (ω|x), the class prior probability P (ω) and
the joint probability density function P (x) over the set of classes:

P (ω|x) =
P (x|ω)P (ω)

P (x)
=

P (x|ω)P (ω)∑
ω∈Ω P (x, ω)

tutorial video wiki wiki

Between scatter The estimated variance or covariance of the means
of a collection of sets of data points. It is thereby the scatter of
the set means. The averaged scatter of the sets is called the the
within scatter. The two scatters constitute together the scatter of
the combined sets. page-28 paper paper wiki

Binary classification A classification problem in which a discriminant
between two classes has to be found. page-31

Boosting Training classifiers by emphasizing the objects that are likely
to be misclassified. It is specifically used in training ensemble clas-
sifiers, e.g. by the adaboost algorithm. video wiki

Branch and bound The optimization of some selection (e.g of features
or prototypes) on the basis of a monotonic criterion, based on back-
ward selection. The branch and bound algorithm minimizes the
search tree by using the monotonicity. See also feature selection.
page-28 paper wiki

Class A class is a set of objects that within a given context is recognized
as similar. Such a class has usually a unique name, the class name.
The individual objects within a class have a label that refers to this
name. If the class is human defined it is sometimes also called a
concept. page-12

http://www.cs.helsinki.fi/u/jkivinen/opetus/iml/2013/Bayes.pdf
http://en.wikipedia.org/wiki/Bayes_error_rate
http://www.37steps.com/exam/bayes_classifier/
http://stattrek.com/probability/bayes-theorem.aspx
https://www.youtube.com/watch?v=XR1zovKxilw
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Bayes%27_rule
https://www.ics.uci.edu/~welling/teaching/KernelsICS273B/Fisher-LDA.pdf
http://www.umiacs.umd.edu/~knkim/KG_VISA/LDA_SVM/swjoo_LinearClassifiers.pdf
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://www.youtube.com/watch?v=UHBmv7qCey4
http://en.wikipedia.org/wiki/Boosting_%28machine_learning%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1300560
http://en.wikipedia.org/wiki/Branch_and_bound
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Class frequency The frequency of which objects of a particular class in
a dataset. It can be used as an estimate for the class prior in case
the dataset is representative for the classification problem. page-35

Class label A pointer assigned to an object that refers to its class or
class name. Note the inconsistency in terminology: an object label
is the same pointer, from an object to a class. page-12

Class membership The class to which a class label points, in case of
crisp labels, or the value(s) of the soft labels. page-10

Class name A name assigned to a class of objects. Sometimes very
symbolic like A or B, sometimes with a very practical meaning like
’healthy’ or ’diseased’.

Class separability Some general measure related to the possible classi-
fication performance given an object representation and a training
set. page-27 tutorial

Class posterior The probability P (ω|x) of a particular class ω for a
given object x. The difference with the class prior is that the pos-
terior probability depends on the observed object. See also confi-
dence. page-32 paper

Class prior The probability P (ω) that an arbitrary object belongs to
class ω. The difference with the class posterior is that the prior is
independent of an observed object. page-35

Classification The assignment of a class (in fact a class name) to an
object by evaluating a trained classifier for that object. page-14
page-18 paper tutorial wiki

Classification accuracy This is one minus the classification error. Some-
times, the accuracy is also multiplied by 100 and presented as a
percentage. See also classification performance. page-35

Classification error The probability that an arbitrarily selected object
from a set of classes is incorrectly classified by a given trained clas-
sifiers. Alternatively it is used for the fraction of objects of a given
finite set of objects that is incorrectly classified. See also apparent

http://fourier.eng.hmc.edu/e161/lectures/classification/node4.html
http://rduin.nl/papers/stipr_98_postprob.pdf
http://www4.comp.polyu.edu.hk/~csajaykr/myhome/teaching/biometrics/spr_pami.pdf
http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/PPRPAGES/pprtut.htm
http://en.wikipedia.org/wiki/Statistical_classification
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error (or training error), test error and true error. Sometimes, this
error is also multiplied by 100 and presented in percentage. page-35
section 8.1 paper example

Classification performance A general expression referring to how well
a classifier classifies unseen objects. There is no sharp mathemati-
cal definition of the performance. In general, the higher the perfor-
mance, the higher the classification accuracy and thereby the lower
the classification error. paper paper tutorial

Classification problem The problem for which a classifier has to be
found. Usually it is defined for a given representation and design
set. See also recognition problem. Some specific problems are the
one-class classification problem (finding a boundary around a single
class), the binary classification problem (finding a discriminant be-
tween two classes) and the multi-class classification problem (find-
ing a classifier between a number of classes, possibly two). page-31
wiki

Classifier A classifier is a rule that assigns a class label to any object
in a particular object representation.

Some classifiers may reject some objects. Some classifiers may as-
sign multiple class labels. Instead of or in addition to class labels
classifiers may output class posteriors, confidence, distances or den-
sities for a all possible classes. In the additional step, the most likely
class or classes have to be determined.

The word classifier is used for both, untrained as well as trained
classifiers. The first refers to the rule, the way the classifier is
trained. Sometimes this is also called a learner. The second refers to
the realized version, the function that assigns labels or confidences.
In section 7.2 a set of classifiers is listed. page-10 page-13 page-30
section 7.2 paper wiki example

Cluster A set of objects that are similar in their representation. It
depends on the problem and the representation whether classes
and clusters coincide. In a single class sometimes several clusters
can be distinguished. page-43

http://www-cgrl.cs.mcgill.ca/~godfried/teaching/mir-reading-assignments/Estimation-Misclassification-Bibliography.pdf
http://37steps.com/exam/crossval_ex/
http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://luc.devroye.org/devroye_1988_automatic_pattemrn_recognition_a_study_of_the_probability_of_error.pdf
http://www.icmla-conference.org/icmla10/CFP_Tutorial_files/jose.pdf
http://en.wikipedia.org/wiki/Statistical_classification
http://www4.comp.polyu.edu.hk/~csajaykr/myhome/teaching/biometrics/spr_pami.pdf
http://en.wikipedia.org/wiki/Statistical_classification
http://37steps.com/exam/classifiers/
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Cluster analysis The study of a dataset by comparing the results of
various clusterings. page-43 section 9.1 paper paper tutorial video
wiki example

Clustering The process of finding clusters. It is a way of unsuper-
vised learning. Three different approaches are the hierarchical tech-
niques, the partitional clustering and mode seeking. page-43 paper
video example

Combined classifier An advanced classifier constituted by a set of
more simple classifiers (called base classifiers). They are combined
by the combining classifier according to some combining rule. If
the base classifiers are of the same type, the combined classifier is
called an ensemble classifier. Well known examples are adaboost
and the random forest classifier. A neural network classifier may
also be considered as a combined classifier. paper example

Combining rule The way a set of classifiers is combined into a single
one. The combining rule can be a fixed rule like majority voting,
the average or the product of posterior probabilities. It can also be
a trained combiner. paper paper tutorial example

Concept A concept is a general idea, or something conceived in the
mind. In pattern recognition it is sometimes used for a class or a
cluster for which the underlying set of objects is the complete set of
specific examples for which the concept is applicable (occasionally
a single representative or typical object is also called a concept).
The concept is the step that consciousness makes after recognizing
patterns in observations and before a name (a word) has been a
assigned to it. wiki

Confidence A value between 0 and 1 that indicates the likelihood that
a particular outcome (e.g. class membership) is correct. This term
is used instead of posterior probability when probabilities in the
strict sense are not well defined. Class confidences may, like class
posteriors, be interpreted as soft labels. page-30 paper example

Consciousness The ability of a thinker, observer or actor to observe
his own state of mind. page-4

https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf
http://web.cs.sunyit.edu/~mike/cs542/Jain50YearsBeyondKmeans.pdf
http://www.ise.bgu.ac.il/faculty/liorr/hbchap15.pdf
http://videolectures.net/ecmlpkdd08_jain_dcyb/
http://en.wikipedia.org/wiki/Cluster_analysis
http://www.37steps.com/4536/eu-song-contest/
https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf
https://www.youtube.com/watch?v=vNdyhLI02bs
http://37steps.com/exam/clustering/
http://www.acsu.buffalo.edu/~tulyakov/papers/tulyakov_MLDAR_comb_review.pdf
http://37steps.com/exam/comb_classifier/
http://rduin.nl/papers/icpr_02_trainedcc.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=667881
http://rduin.nl/presentations/ICPR02_TCC.pdf
http://37steps.com/exam/adaboost_comp/
http://en.wikipedia.org/wiki/Concept
http://rduin.nl/papers/stipr_98_postprob.pdf
http://37steps.com/exam/confidences/
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Covariance A statistical measure for the linear dependence of two stochas-
tic variables:

cov(x, y) = E[(x− E[x])(y − E[y])]

The covariance of a variable with itself is called variance. In pattern
recognition the covariance is often used to study the relation of two
features. See also covariance matrix. page-31

Covariance matrix This symmetric matrix encodes all covariances of
a set stochastic variables, e.g. the features used for representa-
tion. Multi-dimensional Gaussian distributions are fully described
by their mean vector and the covariance matrix. page-31 video wiki
example

Crisp label Labels point from an object to a class. They are assigned
by an expert or estimated during automatic classification. If there
is no uncertainty or ambiguity such a label is unique and symbolic.
It just contains the name of the class. See also soft labels. page-30

Cross-validation An evaluation system in which the design set is re-
peatedly split into a training set and a test set. Each time the
system is trained and tested. Next, the roles of training and test
sets are reversed, and the obtained performance estimates are av-
eraged.

In n-fold cross-validation the design set is split into n partitions.
In n rounds n− 1 partitions are used for training and one for test-
ing. Afterwards all performance estimates are averaged. Common
values for n are 5 or 10. As the result depends on the random
partition, n-fold cross-validation is sometimes repeated a number
of times to get a more stable result, needed for a reliable compar-
ison of different training systems. page-36 paper paper video wiki
example

Curse of dimensionality Statistics in high-dimensional spaces tend to
be bad. This is related to Rao’s paradox, the peaking phenomenon
and to overtraining. page-27 paper quora wiki example

https://www.youtube.com/watch?v=locZabK4Als
http://en.wikipedia.org/wiki/Covariance_matrix
http://37steps.com/exam/covariances/
http://www.di.ens.fr/willow/pdfs/2010_Arlot_Celisse_SS.pdf
http://frostiebek.free.fr/docs/Machine%20Learning/validation-1.pdf
https://www.youtube.com/watch?v=hihuMBCuSlU
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
http://37steps.com/exam/crossval_ex/
http://www.jstor.org/stable/2528798?seq=1#page_scan_tab_contents
http://www.quora.com/What-is-the-curse-of-dimensionality
http://en.wikipedia.org/wiki/Curse_of_dimensionality
http://37steps.com/exam/fcurves/
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Decision forest A combined classifier constituted by of a large set of
decision tree classifiers. Some or all might be very simple, weak
classifiers like the decision stump. Also random forest. page-34
paper wiki

Decision function A function of observable variables that makes a
crisp choice between two or more options. A classifier is a deci-
sion function. page-31

Decision stump A weak classifier based on a decision tree consisting of
just a single decision step, usually optimized for a random subset
of features and/or a random subset of the training set. See decision
forest and adaboost. paper wiki example

Decision tree A classifier based on a sequence of elementary decisions
(usually thresholds on a feature) that can be understood as a graph
tree. At the root the object to be classified comes in. By the
sequence of decisions it arrives at an end node that is assigned to
one of the classes. page-33 page-47 paper tutorial wiki

Dendrogram A graph tree used for visualizing the results of hierarchi-
cal clustering. The tope node stands for the entire dataset. Down-
ward nodes show splits into smaller clusters. Bottom nodes may
correspond to the individual objects. The lengths of the edges can
be related to the clustering strength. page-44 page-47 wiki example
example

Density Often used as a short for probability density. page-48

Density estimation The estimation of a probability density function
(PDF), usually in a vector space, on the basis of a training set.
PDFs are used in the Bayes classifier. This results in classifiers
like Bayes normal, Parzen and naive Bayes, depending on the pro-
cedures and assumptions used for estimating the density. page-31
wiki wiki example

Design set The total set of objects that is available for the designer
of a pattern recognition system. It may be split (repeatedly) into

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
http://en.wikipedia.org/wiki/Random_forest
http://lyonesse.stanford.edu/~langley/papers/stump.ml92.pdf
http://en.wikipedia.org/wiki/Decision_stump
http://37steps.com/exam/adaboost_ex/
http://www.sciencedirect.com/science/article/pii/S0020737387800536
http://www.autonlab.org/tutorials/dtree18.pdf
http://en.wikipedia.org/wiki/Decision_tree
http://en.wikipedia.org/wiki/Dendrogram
http://37steps.com/exam/clustering/
http://www.37steps.com/4536/eu-song-contest/
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://37steps.com/exam/densities/
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subsets like the training set, validation set and test set. page-13
page-19 page-36

Dimension reduction Transformation of a given vector representation,
usually a feature space into another one with a lower dimension then
the original one, while maintaining the information content. This
content is either expressed in the object variability (unsupervised)
or the class separability (supervised). page-27 section 6.3 wiki

Dipping The phenomenon that the learning curve of some classifier for
a particular classification problem shows an optimum for some size
of the training set. paper example

Discriminant A function that decides between two possibilities, in pat-
tern recognition usually between two classes. Decision function and
classifier are more commonly used than ’discriminant’. The latter
is mainly found in Fisher’s Linear Discriminant (FLD) and Linear
Discriminant Analysis (LDA). wiki example

Dissimilarity A measure for the difference between two objects. This
can be a proper metric but may also violate the triangle inequality
or be asymmetric. The main characteristics of a dissimilarity mea-
sure are usually: (1) the property of identity holds: it is zero if and
only if the objects are identical, and (2) it is monotonic: the more
different the objects the larger the dissimilarity. See dissimilarity
representation and dissimilarity space. post

Dissimilarity representation In this representation objects are rep-
resented by pairwise dissimilarities to other objects, either directly
computed from the real world observations or from another rep-
resentation, e.g. features or graphs. The next step may be the
postulation of a dissimilarity space or embedding. page-22 page-26
post paper paper tutorial

Dissimilarity space The vector space defined by the dissimilarities to
a representation set of objects. The vector length (space dimension-
ality) is thereby equal to the size of the representation set. This
set can be the entire training set, a selection of these objects, but
possibly also a set of entirely different objects. Classifiers in this

http://en.wikipedia.org/wiki/Dimensionality_reduction
http://dx.doi.org/10.1007/978-3-642-34166-3_34
http://37steps.com/exam/lcurves/
http://en.wikipedia.org/wiki/Discriminant_function_analysis
http://37steps.com/exam/fisher_clasf/
http://www.37steps.com/1264/dissimilarity-measures/
http://www.37steps.com/1934/the-dissimilarity-space/
http://link.springer.com/chapter/10.1007%2F978-3-642-25085-9_1
http://rduin.nl/papers/Simbad_2013.pdf
http://rduin.nl/presentations/DisRep_Tutorial.pdf
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space can be trained in a similar way as in a feature space. page-26
post paper tutorial example

Eigenvalue decomposition The decomposition of a square matrix X
into a diagonal matrix D and a full matrix V such that XV = VD.
The diagonal elements of D are the eigenvalues and the row vectors
of V constitute a set of orthonormal eigenvectors.

An important application in pattern recognition is the eigenvalue
decomposition of the covariance matrix of some vector represen-
tation of the objects. If the eigenvectors are ranked according to
decreasing eigenvalues then the first n eigenvectors constitute the
linear subspace for which the sum of the squared distances of the
objects to this subspace is minimal. It is assumed that the dataset
mean has been shifted to the origin first. See also eigenspectrum.
page-46 wiki example

Eigenspectrum A plot of the ranked eigenvalues. Usually applied to
the covariance matrix of a vector representation of a set of objects.
It shows the data variances in the directions of the eigenvectors.
Often the cumulative eigenspectrum is preferred for visualization
purposes. page-48 paper example example

Embedding The computation of a set of vectors in an Euclidean space
for which the distances are equal to a given set of dissimilarities or
the inner products are equal to a given set of similarities (isometric
embedding), see Euclidean geometry and MDS. page-26 wiki wiki

Ensemble classifier A subset of the family of combined classifiers. In
an ensemble all base classifiers are of the same type, e.g. decision
stumps used in adaboost. wiki tutorial example example

Error estimation Procedure to estimate the classification error of a
classifier, e.g. by using a test set or cross-validation. page-35 sec-
tion 8.1 paper paper example

Euclidean geometry A geometry based on Euclid’s axiomatic system,
the Elements. The traditional vector representation in pattern
recognition is usually equipped with a Euclidean geometry. Dis-
tances are based on the Euclidean metric. page-26 wiki wiki

http://www.37steps.com/1934/the-dissimilarity-space/
http://www.sciencedirect.com/science/article/pii/S0167865511001322
http://rduin.nl/presentations/DisRep_Tutorial.pdf
http://37steps.com/exam/disspace/
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://37steps.com/exam/eigval/
http://eprints.soton.ac.uk/259779/1/OnTheEigenspectrumOfTheGramMatrix.pdf
http://37steps.com/exam/eigval/
http://37steps.com/exam/eigspec/
http://en.wikipedia.org/wiki/Embedding
http://en.wikipedia.org/wiki/Multidimensional_scaling
http://en.wikipedia.org/wiki/Ensemble_learning
http://wwwis.win.tue.nl/~tcalders/teaching/datamining09/slides/DM09-03-Classification.pdf
http://37steps.com/exam/adaboost_ex/
http://37steps.com/exam/comb_classifiers/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1055260
http://link.springer.com/article/10.1023%2FA%3A1013999503812
http://37steps.com/exam/crossval_ex/
http://en.wikipedia.org/wiki/Euclidean_geometry
http://en.wikipedia.org/wiki/Euclidean_distance
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Evaluation Test of the performance of (a part of) a pattern recognition
system. This may best be done by an independent test set. page-12
page-35 chapter 8 short-tutorial long-tutorial video example

Feature A symbolic or numeric property of a real world object that
might be useful to determine its class. The word ’attribute’is used
for this as well. Different objects however may have different num-
bers of attributes, while usually for all objects in the same problem
the same features can be measured. Thereby objects may be rep-
resented by a feature vector, or by a set of attributes. page-12
page-15

Feature curve A plot that shows the performance of a trainable system
(e.g. a classifier) as a function of the number of features used for
training. page-39 page-48 section 8.3 example example

Feature extraction The process of determining good features for a fea-
ture representation of objects. This may refer to raw data like im-
ages or time signals, but also to already given representation. In
the latter case the aim is to simplify the representation, e.g. by di-
mension reduction. Examples are PCA and LDA. page-18 page-27
tutorial video wiki example

Feature representation The representation of objects by features re-
sulting in a feature space. page-24

Feature scaling See scaling. page-23 wiki example

Feature selection Reducing the dimensionality of a feature space by
the selecting of a subset of the features. Procedures for feature
selection consist of a criterion (a filter approach or a wrapper) and
a strategy (e.g. individual selection, forward selection, backward
selection, branch and bound, floating search). page-27 paper paper
post tutorial video video wiki example example

Feature space The vector space defined by the feature vectors. This
concept is so familiar in statistical pattern recognition and machine

http://www.comp.dit.ie/bmacnamee/materials/ml/lectures/Evaluation.pdf
http://www.icmla-conference.org/icmla11/PE_Tutorial.pdf
https://www.youtube.com/watch?v=CmEqvD_ov2o
http://37steps.com/exam/crossval_ex/
http://37steps.com/exam/fcurves/
http://37steps.com/exam/fcurves/
http://facweb.cs.depaul.edu/research/vc/vc_workshop/presentations/pdf/daniela_tutorial2.pdf
https://www.youtube.com/watch?v=dou1KqG6kvE
http://en.wikipedia.org/wiki/Feature_extraction
http://37steps.com/exam/pca_ex/
http://en.wikipedia.org/wiki/Feature_scaling
http://37steps.com/exam/fscale/
http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=574797
http://sebastianraschka.com/Articles/2014_sequential_sel_algos.html
http://www.cost-ic0702.org/summercourse/files/feature_selection.pdf
https://www.youtube.com/watch?v=UOadhDKRbPM
https://www.youtube.com/watch?v=x5wa1w-BpRE
http://en.wikipedia.org/wiki/Feature_selection
http://37steps.com/exam/featsel_ex1/
http://37steps.com/exam/featsel_ex2/
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learning that sometimes also vector spaces used for object repre-
sentation but created otherwise, are also called feature spaces. Ex-
amples are the kernel space and the dissimilarity space which are
defined by functions of input features or distances between objects.
page-8

Feature vector The vector storing all relevant properties of a real world
object in a particulary well defined order. It may also be the un-
folded set of image pixels (pixel space) or a sampling of a spectrum
or a time signal. If feature vectors are used to represent a set of
objects in a vector space it is necessary that the images, spectra or
signals are converted to the same size before sampling.

Filter In general a filter transforms an input (stream) by a fixed proce-
dure into an output (stream). In relation with feature selection it
has the specific meaning that it refers to criteria that are different,
usually less complex, than the final classifier to be used after fea-
ture selection. The latter would be the wrapper approach, which
is more focussed to the final use of the features to be selected. The
filter approach, however, has the advantage that it might be faster
(more simple to compute) and may avoid overtraining. Filtering is
especially important if feature selection is done because the com-
putation of the target classifier is troublesome for the given feature
size. page-29 paper wiki example

Fisher classifier Usually called Fisher’s Linear Discriminant (FLD).
This is the traditional linear classifier optimizing the between scat-
ter w.r.t. the within scatter. This classifier is based on the same
criterion as Linear Discriminant Analysis (LDA). Also the classifier
is thereby occasionally called LDA. page-32 paper paper video wiki
example

Fisher mapping The orthonormal transformation of a feature space
that maximizes the class between scatter w.r.t. the average class
within scatter. It is also called LDA. video wiki example

FLD Fisher’s Linear Discriminant, see Fisher classifier page-32 pa-
per video wiki example

http://clopinet.com/isabelle/Projects/ETH/lecture8.pdf
http://en.wikipedia.org/wiki/Feature_selection
http://37steps.com/exam/wrapper_filter/
http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/pdf
https://www.youtube.com/watch?v=QRaQM7ZjxyE
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://37steps.com/exam/fisher_clasf/
https://www.youtube.com/watch?v=moqPyJQHR_s
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://37steps.com/exam/fisher_map/
http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf
http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf
https://www.youtube.com/watch?v=QRaQM7ZjxyE
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://37steps.com/exam/fisher_clasf/
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Forward search See forward selection.

Forward selection The selection of features or prototypes on the basis
of the performance increase after addition to an already selected
set. The selection is started with the best performing individual.
See also feature selection. page-28 example example

Floating search A forward selection procedure of features or proto-
types including backward steps. See also feature selection. page-28
paper

Gaussian distribution See normal distribution. page-31 tutorial video
wiki example

Generalization Generalization is the step from the observations of a set
of objects to their common properties or concept. In logic this is
called induction. In pattern recognition it is the process of finding
clusters, classes or typical objects. If for a new object, that was
not used in the generalization, its most similar cluster, class or
typical object can now be determined. Thereby a property may
be predicted that has not been measured. page-5 page-12 page-30
chapter 7 wiki wiki

Graph A symbolic representation of data: nodes (or vertices) connected
by edges. In pattern recognition used for visualization, representa-
tion (see graph representation) and generalization (see hierarchical
clustering and decision trees). page-47 wiki

Graph tree A connected graph in which any two nodes (vertices) are
connected by exactly one path. page-47 wiki

Graph representation A structural object representation by a set of
nodes partially connected by edges. Nodes (vertices) and edges
may be attributed. page-16 page-22 paper paper wiki

Grid search A way to find an optimal parameter setting, e.g. hyperpa-
rameters used for regularization. The possibly multi-dimensional
domain of the parameters (e.g. of a classifier) is sampled by a grid
and for every parameter vector on the grid a criterion (e.g. the

http://37steps.com/exam/featsel_ex1/
http://37steps.com/exam/featsel_ex2/
http://www.sciencedirect.com/science/article/pii/0167865594901279
http://www.autonlab.org/tutorials/gaussian14.pdf
https://www.youtube.com/watch?v=eho8xH3E6mE
http://en.wikipedia.org/wiki/Normal_distribution
http://37steps.com/exam/gauss_dist/
http://en.wikipedia.org/wiki/Generalization
http://en.wikipedia.org/wiki/Universal_generalization
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Tree_%28graph_theory%29
http://www.ai.rug.nl/ki2/literature/graphmatch-bunke.pdf
http://www.informatik.uni-ulm.de/ni/ANNPR10/InvitedTalks/BuhnkeANNPR.pdf
http://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
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performance of the classifier) is determined. The best parameter
vector is used. page-34 wiki

Hierarchical clustering A clustering procedure in which small clusters
(initially possibly single objects) are iteratively merged into large
ones, eventually into a single large cluster. Hierarchical clustering
may be visualized by a dendrogram. page-43 subsection 9.1.1 paper
tutorial video wiki example example

Hold-out error The classification error of a classifier trained by the
available design set, estimated by the classification error found for
a classifier trained by a randomly chosen subset of the design set by
applying it to the unused part of the design set (the hold-out set).
Sometimes the subsets have equal size and the roles of the two sets
is reversed as well and results are averaged: 2-fold cross-validation.
page-36 paper wiki example

Image A one-, two-, or multi-dimensional set of pixels. For many pat-
tern recognition applications it is relevant that the assumption
holds that neighboring pixels have a higher correlation than more
remote ones. This information is lost by a straight forward pixel
representation. page-16

Individual selection The selection of features or prototypes on the ba-
sis of their individual contribution to some performance measure.
See also feature selection. page-28 example example

Intrinsic dimensionality Formally this is the number of variables to
represent a signal. For vector representations of objects this corre-
sponds the dimensionality of the, possibly nonlinear, subspace that
spans these objects with sufficient accuracy. wiki example

Input space Machine learning terminology for the space of the given
(vector) representation. It is usually used in relation with kernel
representations as it refers to the input space for which kernels are
computed. The input space is in this case identical to what is called
feature space in pattern recognition. paper

http://en.wikipedia.org/wiki/Hyperparameter_optimization
http://www.ijsrp.org/research-paper-0313/ijsrp-p1515.pdf
http://www.autonlab.org/tutorials/kmeans11.pdf
https://www.youtube.com/watch?v=nIsLDtXlalo
http://en.wikipedia.org/wiki/Hierarchical_clustering
http://37steps.com/exam/clustering/
http://www.37steps.com/4536/eu-song-contest/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1055260
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
http://37steps.com/exam/crossval_ex/
http://37steps.com/exam/featsel_ex1/
http://37steps.com/exam/featsel_ex2/
http://en.wikipedia.org/wiki/Intrinsic_dimension
http://37steps.com/exam/intrinsic_dim/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=788641
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Invariant A property, often a (possible) feature, that has no relation
with a particular class. Objects of that class may have all values of
the invariant. For example, rotation angle is an invariant for most
character classes, but not for the numbers ’6’ and ’9’, as they will
be confused by rotation. page-24

Iris dataset A classical dataset in pattern recognition. It is one of the
first real world datasets used to illustrate (by R.A. Fisher) the oper-
ation and performance of a classifier (Fisher’s Linear Discriminant).
data paper wiki example

Kernel A function K(x, y) of two objects x and y. It is either computed
from a representation like a feature space, or from the raw data
of x and y directly. A training set of m objects is converted by
the kernel in an m × m matrix. This may be used directly as a
representation, but much more often the kernel trick is used (when
possible) to train classifiers in kernel space. See also dissimilarity
representation and dissimilarity space. page-33 example

Kernels are also used in non-parametric density estimation, e.g.
Parzen, and in the classifiers based on it. page-33 example

Kernel space If a kernel is separable, i.e. if K(x, y) = φ(x)φ(y) then
the space φ(x) and φ(y) refer to is the kernel space. If the kernel
satisfies the Mercer conditions, e.g. a Gaussian kernel (a radial
basis kernel) or a polynomial kernel, this space is a Hilbert space.
In support vector machines the kernel space is only used implicitly
by the kernel trick. paper tutorial wiki wiki

Kernel trick If a kernel is separable, i.e. if K(x, y) = φ(x)φ(y), which
is the case if K() fulfills the Mercer conditions, then the kernel
may be interpreted as the inner product in the kernel space. As
some transformations and classifiers, in particular the support vec-
tor machines, can be written in terms of inner products only, they
implicitly base their result on a virtual kernel space, which might
be of an infinite dimensionality. See also the Wikipedia article on
this topic. page-33post tutorial video wiki

https://archive.ics.uci.edu/ml/datasets/Iris
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/pdf
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://37steps.com/exam/Iris_dataset/
http://37steps.com/exam/long_spiral/
http://37steps.com/exam/parzen_density/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=788641
http://www.mit.edu/~9.520/spring07/Classes/class03_rkhs.pdf
http://en.wikipedia.org/wiki/Mercer%27s_theorem
http://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
http://sebastianraschka.com/Articles/2014_kernel_pca.html
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
https://www.youtube.com/watch?v=XUj5JbQihlU
http://en.wikipedia.org/wiki/Kernel_method
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KLT The Karhunen-Loeve Transform. It is sometimes used as an
alternative name for PCA. In some toolboxes it is used for a slightly
different use of PCA, e.g. PCA based on the averaged class co-
variance matrix instead of the overall covariance matrix. page-46
example

kNN The k-nearest neighbor classifier. New objects are assigned to
the majority class of the k nearest neighbors in the training set.
page-33 example

KPCA Kernel PCA, an extension of PCA by using the kernel trick.
Consequently a non-linear subspace is found, depending on the
choice of the kernel. Often this subspace is 2D and the purpose
is visualization by a scatter plot. page-47 wiki example

Label In general this is a tag or a pointer assigned to some entity in order
to link it to some other entity. In a pattern recognition context it
is often a short for class label as it links an object to a class by the
name of that class. page-12

Labeled object An object with a known class label. It may be used
in a training set for training a classifier or in a test set for error
estimation. page-30

LDA Linear Discriminant Analysis stands for both, the linear trans-
formation to the sub-space of a vector space under consideration
for which the class between scatter is maximized w.r.t. the average
class within scatter, as well as for the classifier that assigns new
objects to the class with the highest posterior probability under
the assumption of Gaussian class distributions with equal covari-
ance matrices. LDA is also called Fisher mapping. page-28 page-32
page-46 paper paper post tutorial wiki example

Learner Sometimes used as alternative for an untrained classifier: the
learning rule to find a classifier from data. It is especially used in
discussions on weak and strong classifiers (learners).

Learning curve A plot that shows the performance of a trainable sys-
tem (e.g. a classifier) as a function of the size of the training set.
page-37 page-48 section 8.2 example example

http://37steps.com/exam/eigenfaces/
http://37steps.com/exam/knn_ex/
http://en.wikipedia.org/wiki/Kernel_principal_component_analysis
http://37steps.com/exam/kpca_ex/
https://www.ics.uci.edu/~welling/teaching/KernelsICS273B/Fisher-LDA.pdf
http://www.umiacs.umd.edu/~knkim/KG_VISA/LDA_SVM/swjoo_LinearClassifiers.pdf
http://sebastianraschka.com/Articles/2014_python_lda.html
https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v6.1.pdf
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://37steps.com/exam/fisher_map/
http://37steps.com/exam/lcurves/
http://37steps.com/exam/lcurves/
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Learning from examples This is the general goal of pattern recogni-
tion. One may gain knowledge from a teacher, but if this is not
available one should learn from experience, from the observations
as they arise: learning from examples. page-6 page-30

LOO Leave-One-Out cross-validation. A cross-validation procedure
which uses as many folds as objects in the design set. In each fold
a classifier is trained on n-1 objects and tested on the remaining
object. As this is a systematic procedure, repeating makes no sense
as it will result in the same error estimate. page-37 example

LOO-error The classification error as estimated by LOO cross-validation.
page-37

Mahalanobis distance The distance in a vector space between two sets
of objects, or two distributions A and B, defined by their means
µA and µB and their common covariance matrix Σ.

D(A,B) =
√

(µA − µB)TΣ−1(µA − µB)

Using the same metric also the distance between an object x and
a set or distribution of objects A may be defined:

D(A,B) =
√

(x− µ)TΣ−1(x− µ)

or between two objects x and y within a set or distribution with
covariance matrix Σ

D(A,B) =
√

(x− y)TΣ−1(x− y)

Note that if Σ equals the identity matrix the Mahalanobis distance
equals the Euclidean distance. page-40 wiki

MDS Multi-Dimensional Scaling is a nonlinear technique for embed-
ding a set of objects with a given dissimilarity matrix in a Euclidean
vector space such that the distances in this space correspond to the
given matrix. Often this vector space is 2D and the purpose is
visualization by a scatter plot. page-46 wiki example

http://37steps.com/exam/loo_ex/
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Multidimensional_scaling
http://www.37steps.com/4536/eu-song-contest/
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Mode seeking A clustering procedure based on the local maxima (modes)
of the probability density function of all objects. page-45 subsec-
tion 9.1.3 paper paper wiki example

MST Minimal Spanning Tree: A graph tree representing a set of
objects as the nodes of the tree used for visualization the dataset.
The length of the edges are the distances between the connected
objects. The sum of all represented lengths is minimized. page-48
video wiki

Multi-class classification A classification problem in which a number
of classes classes (two or more) have to be distinguished. Not all
classifiers are able to distinguish directly more than two classes.
Such binary classifiers need to a one-against-one or a one-against-
rest strategy to solve a general multi-class problem. page-31 paper
paper tutorial wiki example

Naive Bayes Used for classification procedures based on the Bayes clas-
sifier and the assumption that all features are independent. Conse-
quently, the density functions can be estimated feature by feature,
followed by a multiplication. Usually histograms are used for esti-
mating the feature densities. page-33post tutorial video wiki

Nearest mean Classification rule in which objects are assigned to the
class of the nearest class mean derived from the training set. page-
32 paper example

Nearest neighbor The closest object in a set of objects (usually the
training set) of a given object (e.g. a test object). The 1-nearest-
neighbor rule (1-NN) is one of the traditional classifiers. The kNN
classifier, which selects the majority class among the k nearest
neighbors in the training set, approximates the Bayes classifier for
an appropriate choice of k. The optimization of k is based on the
assumption that the training set is selected according to the true
class density distributions. page-32 paper scholar video wiki wiki
example

Neural network Originally designed as a simulation of the nervous sys-
tem. In pattern recognition it is a flexible trainable tool for defining

http://home.ku.edu.tr/mehyilmaz/public_html/mean-shift/00400568.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-34166-3_6
http://en.wikipedia.org/wiki/Mean_shift
http://37steps.com/exam/clustering/
https://www.youtube.com/watch?v=5xosHRdxqHA
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://vision.caltech.edu/malaa/publications/aly05multiclass.pdf
http://rduin.nl/papers/stipr_98_postprob.pdf
http://www.mit.edu/~9.520/spring09/Classes/multiclass.pdf
http://en.wikipedia.org/wiki/Multiclass_classification
http://37steps.com/exam/mclassification/
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://www.youtube.com/watch?v=54wfthrhwLQ
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1471707
http://37steps.com/exam/lcurves/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1053964
http://www.scholarpedia.org/article/K-nearest_neighbor
https://www.youtube.com/watch?v=UqYde-LULfs
http://en.wikipedia.org/wiki/Nearest_neighbour_classifiers
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://37steps.com/exam/knn_ex/
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non-linear subspaces and non-linear classifiers. It consists of a large
set of simple units, called neurons, combining many inputs into a
single output. Usually they are organized in layers. A non-linear
neural network has at least three layers: the input layer (connected
to the features), a hidden layer and an output layer (the class con-
fidences). A very simple, degenerated neural network is the percep-
tron, consisting out of a single neuron. Neural networks are usually
trained sequentially. page-33 paper tutorial wiki wiki

Non-parametric estimation Model estimation, e.g. a probability den-
sity function, not based on optimizing a parametric model, e.g. a
normal distribution, but on a non-parametric function of all obser-
vations, e.g. a kernel density estimator (Parzen). See also para-
metric estimation. page-31 tutorial wiki example

Normal distribution A very common bell shaped one-dimensional or
multi-dimensional distribution. It is very common as for many
other distributions holds that the means of a set of independently
randomly drawn random variables asymptotically approximate a
normal distribution. The normal distribution, f(x, µ,Σ) depends
on just the class mean µ and the covariance matrix Σ: wiki

f(x, µ,Σ) =
1

(2π)k/2
√
|Σ|

e−(x−µ)T Σ−1(x−µ)/2

Normal distributions with the given parameters are symbolically
denoted by N(µ,Σ). The Bayes normal classifiers are based on the
assumption of normally distributed classes. Normal distributions
are also named Gaussian distributions. page-31 tutorial video wiki
example

Normalization Used to describe the process of removing object differ-
ences that are not relevant for the classification, e.g. rotation or
size. page-23 example

Object A real world entity that can be physically observed. Also used
for a representation of such an entity. Examples are 2-dimensional

http://www-vis.lbl.gov/~romano/mlgroup/papers/neural-networks-survey.pdf
http://people.sabanciuniv.edu/berrin/cs512/reading/mao-NN-tutorial.pdf
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Deep_learning
http://research.cs.tamu.edu/prism/lectures/pr/pr_l7.pdf
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://37steps.com/exam/parzen_density/
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://www.autonlab.org/tutorials/gaussian14.pdf
https://www.youtube.com/watch?v=eho8xH3E6mE
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://37steps.com/exam/gauss_dist/
http://37steps.com/exam/normalization/
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items like photos, characters, plotted curves; 3-dimensional items
like chair, tables, cells, airplanes; but also time dependent events
like speech, gestures, movies. More abstract entities like a voice,
a persons identity, style of writing, a composition are sometimes
called an object. Another way to phrase it is that an object is a
realization of a concept, which corresponds to the pattern recog-
nition terminology: a member (element) of a class (set). page-8
page-12 page-15 page-17

Object label A pointer to the class to which an object belongs or may
belong, e.g. its name. Note the inconsistency in terminology: a
class label is often used in way: the same pointer from an object
to a class.

Object representation A formal description of an object that facili-
tates the comparison of objects and the generalization of sets of
similar objects to a class. Examples are the feature representation,
pixel representation, dissimilarities, kernels and graphs. page-22
section 6.1 paper

Object variability A measure that expresses how much the objects in
a given set differ in general.

Observation A single measurement or a set of measurements made from
a single object. page-6 page-15

One-against-one A scheme for solving the multi-class classification prob-
lem in which binary classifiers (discriminants) are trained between
all pairs of classes. On a second level these classifiers are combined.
page-31 example

One-against-rest A scheme for solving the multi-class classification
problem in which binary classifiers (discriminants) are trained be-
tween all single classes and the remaining ones. On a second level
these classifier are combined. page-31 example

One-class classification A classification problem in which a boundary
around a single class has to be found. paper paper thesis website
wiki

http://www.cs.toronto.edu/~sven/Papers/ruccs.pdf
http://37steps.com/exam/mclassification/
http://37steps.com/exam/mclassification/
http://insy.ewi.tudelft.nl/sites/default/files/ML_SVDD_04.pdf
http://aran.library.nuigalway.ie/xmlui/bitstream/handle/10379/1472/camera_ready_occ_lnai.pdf?sequence=1
http://homepage.tudelft.nl/n9d04/thesis.pdf
http://prlab.tudelft.nl/content/one-class-classification
http://en.wikipedia.org/wiki/One-class_classification
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Overfitting Classifiers and transformations that are optimized too long
or by a too sensitive procedure may adapt to the noise in the data
instead of to the for generalization relevant information. Such pro-
cedures may be qualified as overtraining, the result as overfitting.
wiki example

Overtraining Originally overtraining refers to training a neural net-
work too long, by which it adapts to the noise in the data. Now
overtraining is also used for any classifier that by bad parameter
settings, too small training sets, too many dimensions or too many
parameters to be optimized adapts to the noise. Other terms for
(about) the same phenomenon are curse of dimensionality, over-
fitting, peaking and Rao’s paradox. page-27 page-35 page-39 post
paper wiki example

Parametric estimation Model estimation, e.g. a probability density
function, based on optimizing a parametric model, e.g. a normal
distribution, and not on a non-parametric function of all obser-
vations, e.g. a kernel density estimator (Parzen). See also non-
parametric estimation. page-31 tutorial wiki wiki

Partitional clustering A clustering procedure which starts with an ini-
tial, possibly random, clustering with the desired number of clus-
ters. Iteratively it is optimized according to some specific criterion.
Examples are k-Means, k-Centers and Expectation-Maximization
(EM) clustering. page-44 subsection 9.1.2 paper wiki example

Parzen Kernel based procedures for non-parametric density estimation.
Usually a spherical normal distribution is used as kernel. Its width,
also called the smoothing parameter, should be adapted to size of
the training set. If done properly the Parzen classifier, which is
based on the Parzen density estimates, is asymptotically a Bayes
classifier. page-31 page-33 paper paper post paper tutorial example
example

Pattern The word ’pattern’ is overly used for slightly different but re-
lated concepts. The main one is the subset of similar objects in
a larger set (a class or a cluster). It is however also used for the

http://en.wikipedia.org/wiki/Overfitting
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http://www.sciencedirect.com/science/article/pii/0378475495000038
http://en.wikipedia.org/wiki/Overfitting
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http://en.wikipedia.org/wiki/Estimation_of_covariance_matrices
http://www.sciencedirect.com/science/article/pii/S0167865509002323
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http://www.cse.msu.edu/~cse802/DHSch4_nonparametric
http://37steps.com/exam/parzen_clasf/
http://37steps.com/exam/parzen_density/
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entire similarity structure in a collection of objects as well as for a
single object which is typical for a set of similar objects.

Pattern recognition This is the process or ability of finding patterns
in a set of objects. It also refers to the scientific domain that studies
such processes as well as to the technology of creating artificial sys-
tems that can do this. The main sub-domains are representation
and generalization. Pattern recognition is related to but slightly
different from the fields of artificial intelligence and machine learn-
ing. As pattern recognition refers to both, a human ability as well
as a research domain, it may be labeled as an art as well as a
science. page-6 paper tutorial wiki

PCA Principal Component Analysis finds a orthogonal transfor-
mation for a vector space that decorrelates a specified covariance
matrix C. It results in a set of eigenvectors (the new axes) V and
the variances (diagonal terms) of the transformed covariance matrix
D, also called eigenvalues. Thereby

V −1CV = D

The orthonormal transformation is V T = V −1 as the covariance
matrix of the transformed space is

E[V Tx(V Tx)T ] = V TE(xxT )V = V −1CV = D

It is assumed without loss of generality that x has zero mean.

In practical applications often just the eigenvectors corresponding
the the largest eigenvalues are used as they stand for the main
directions of variance. Other directions are then neglected under
the assumption that they correspond to noise. As this is effectively
a type of averaging it may improve accuracy.

PCA is related to the Karhunen-Loeve Transform KLT and to LDA
or Fisher mapping. page-28 page-46 post tutorial wiki example

Peaking phenomenon The phenomenon that the expected classifica-
tion performance computed for a constant size of the training set as
a function of the number of features (the feature curve) may show

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=824819
http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/PPRPAGES/pprtut.htm
http://en.wikipedia.org/wiki/Pattern_recognition
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/Lecture%209%20-%20PCA.pdf
http://en.wikipedia.org/wiki/Principal_component_analysis
http://www.37steps.com/4536/eu-song-contest/
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an optimum for some small number of features. See also overtrain-
ing and curse of dimensionality post paper paper example

Perceptron A simple neural network classifier consisting out of a single
neuron. The perceptron classifier is linear and trained sequentially.
It is sometimes used as a weak classifier. wiki example

Pixel representation Images can be represented by their pixels. The
unfolded 1-dimensional vector constructed from 2-dimensional or
even multi- dimensional images is then used for building a feature
space. There are two problems with this approach: it results in very
high-dimensional spaces and small shifts or rotations of the image
may result into a large jump of the representing vector. A good
property of the pixel representation is that all information available
in the image is preserved, in contrast to features measured from the
image. page-25 example

Pixel space Sometimes used as a short for ’feature space based on pix-
els’. Objects like images and spectra are in this way represented
by a feature vector with all pixels or samples as elements. A set of
64x64 grey value images is thereby represented by a set of vectors
in a 4096 dimensional space. page-25 example

Posterior probability In classification this is the probability P (ω|x)
that a particular object, given by an observation x, belongs to the
class ω. page-32 paper wiki

Prior knowledge All knowledge of measurements, models and proba-
bilities that may be helpful to classify a particular object x, except
any measurement on x itself. wiki

Prior probability In classification this is the probability P (ω) for a
particular class ω of an object x without taking into account any
measurement on x itself. page-31 tutorial video example

Probability A number between 0 and 1 which is the likeliness that a
particular event will occur. It is thereby the expectation of the
fraction of the number of times that this event occurs in the total
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http://www.sciencedirect.com/science/article/pii/S0167865508001426
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https://www.youtube.com/watch?v=nCRTuwCdmP0
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number of events under consideration. See also probability density.
wiki

Probability density This is used for describing the probability of events
given by a (set of) continuous variable(s). If the probability density
of an event x is f(x) then the probability that x is in the interval
[x − 4, x + 4] is

∫
x−4,x+4 f(x)dx. f(x) is also named probabil-

ity density function (PDF), probability distribution or just density.
See density estimation for the relation with classifiers. page-31 tu-
torial wiki

Prototype In general, something that is typical for a larger class. In
pattern recognition it is often used for objects that are representa-
tive for a class or for a classification problem. page-32 example

QDA Quadratic Discriminant Analysis is used for the Bayes nor-
mal classifier allowing different covariance matrices for the classes.
page-32 tutorial wiki example

Random forest A combined classifier based on an ensemble of decision
tree trained by a random subset of the training set and a random
subset of the features. See also decision forest. page-34

Recognition In the strict sense the recognition of an object is equivalent
to its classification. In a broader sense it includes the (development
of the) representation as well of the classifier. page-4

Recognition problem The application for which a pattern recognition
system has to be designed. The problem may include not only
representation and generalization, but also the choice of sensors
and the collection of a design set. wiki

Regularization A general term for the various ways to avoid overtrain-
ing in optimizing a classifier, e.g. adding noise to the data, adding
noise to an optimization step, restrictions on the size of the step,
adding a cost term to the criterion and early stopping (a limit on
the number of optimization steps). page-41 video wiki example

http://en.wikipedia.org/wiki/Probability
http://www.autonlab.org/tutorials/pdf12.pdf
http://www.autonlab.org/tutorials/pdf12.pdf
http://en.wikipedia.org/wiki/Probability_density_function
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https://www.youtube.com/watch?v=PvuN23m7hhY
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Reject Classification option by which no class is assigned to the input
object. Instead it is rejected, i.e. returned for a better classifier,
a human specialist or just put aside. Reasons for rejection can be
that the object is for every class an outlier, or it is a borderline
case. page-30 paper paper example example

Representation The representation of an object is a description of that
object in terms of measurable observations that enables the a nu-
meric or logic comparison with other objects in the same problem.
page-8 page-11 page-17 chapter 6 post tutorial

Representation set The representation set is a set of objects used in
a dissimilarity representation to represent other objects by their
dissimilarities to the objects in the representation set. page-26
paper

Resubstitution error The classification error estimated by resubsti-
tuting the training set used for training the classifier. Also apparent
error or training error. page-35 example

Scaling Used to modify feature spaces in such a way that the variability
of features (e.g. their variances, mean class variances or domains)
become equal. page-9 page-23 post wiki

Scatter matrix The scatter is a synonym for the estimated variance
or covariance matrix, based on observed data points. If the set of
data points has been split into subsets, the scatter of the total set
is split into the between scatter and the within scatter. See also
LDA and Fisher classifier. wiki

Scatter plot A plot that shows the vector locations of object represen-
tation in a 2D or 3D space, or a projection of a higher dimensional
vector space. page-8 page-46 subsection 9.2.1 example

Segmentation The isolation of an object to be recognized from a larger
observation containing other objects and/or a disturbing background.
Examples are a single character on a page with more text and im-
ages, a phoneme in a speech signal, a face in an picture from a
street with more people. page-16 page-23 wiki wiki wiki

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1054406
http://jmlr.csail.mit.edu/proceedings/papers/v8/nadeem10a/nadeem10a.pdf
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http://www.37steps.com/720/representation-and-generalisation/
http://rduin.nl/presentations/DisRep_Tutorial.pdf
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Semantic gap The jump in the processing of observations, from phys-
ical phenomena, senses, nervous system to understanding. What
first was just a physically measurable signal gets suddenly a mean-
ing. page-6 wiki

Similarity A measure expressing how much two objects are equal. Usu-
ally similarities are positive, sometimes even restricted to the [0,1]
interval. See also dissimilarity. page-5 scholar wiki

Soft label Labels point from an objects to a class. They are assigned
by an expert or estimated during automatic classification. In both
cases there might be uncertainty or ambiguity. This can be solved
by replacing the traditional crisp labels by soft labels, usually num-
bers between 0 and 1. Every object has a soft label value for every
class. They don’t necessarily sum to one. They might be inter-
preted in several ways: uncertainties, probabilities or fuzzy class
membership. See also crisp label. scholar wiki

Strong classifier This is a classifier that, after training, is expected to
perform significantly better than random assignment, also called a
strong learner. The opposite of a strong classifier is a weak classifier
(weak learner). wiki

Structural representation The representation of an object by some
structural means, e.g. (sequences of) symbols or a graph. page-22
paper paper

Supervised learning This is learning from examples under supervision
of a teacher. This almost always refers to a teacher who assigns
desired class labels to the example objects. page-28 wiki

SVM Support Vector Machine. A linear classifier or regression func-
tion that is optimized for a distance based criterion as a linear func-
tion of a subset of the given vectors (training objects), the support
vectors. Thanks to the kernel trick also non-linear classifiers can
be trained. The result depends on the choice of the kernel. page-33
tutorial wiki example

http://en.wikipedia.org/wiki/Semantic_gap
http://www.scholarpedia.org/article/Similarity_measures
http://en.wikipedia.org/wiki/Similarity_measure
http://www.scholarpedia.org/article/Fuzzy_classifiers
http://en.wikipedia.org/wiki/Fuzzy_set
http://en.wikipedia.org/wiki/Boosting_%28machine_learning%29
http://www.sciencedirect.com/science/article/pii/S003132031000542X
http://www.worldscientific.com/doi/abs/10.1142/S0218001412600051
http://en.wikipedia.org/wiki/Supervised_learning
https://www.youtube.com/watch?v=_PwhiWxHK8o
http://nl.wikipedia.org/wiki/Support_vector_machine
http://37steps.com/exam/svm/
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Template matching A classification rule in which objects are assigned
to the most similar object example. Such examples are usually se-
lected by the teacher or found automatically by a prototype selec-
tion procedure. Originally templates are used for the recognition of
simple objects like characters by optical comparison. page-32 wiki

Teacher The application expert who is able to collect examples, label
them, and define a representation, e.g. suggesting features or defin-
ing a dissimilarity measure. page-30

Testing Evaluation of a system by a test set, preferably selected inde-
pendent from the training set. See evaluation and error estimation.
page-35 example

Test error The classification error as estimated by a test set. page-35
example

Test set A set of objects with given class labels used for the evaluation
of a classifier. A good test set is representative for the set of objects
to be classified later by the classifier and is not used during training.
page-12 page-19 page-35 page-36 example

Trained classifier A classifier trained by a training set, ready for eval-
uation by a test set or to be applied in practice. A trained classifier
might be just a linear function. The way it is trained (the untrained
classifier) may not be visible anymore. page-30

Training The optimization of a mapping or a classifier for a given set of
objects, the training set. There are several types of training proce-
dures, e.g. analytically, based on a single estimate of the parame-
ter (e.g. the Fisher classifier), iteratively, by optimizing a criterion
based on the entire training set (e.g. SVM), or sequentially, object
by object (e.g. perceptron) page-30

Training error The classification error of a classifier based on the set
of objects used for training the classifier, its training set. example

Training set The set of objects used for optimizing a mapping or a
classifier. page-10 page-12 page-19 page-30 page-35 example

http://en.wikipedia.org/wiki/Template_matching
http://37steps.com/exam/crossval_ex/
http://37steps.com/exam/crossval_ex/
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True classification error The classification error as made by the clas-
sifier on the objects of the problem for which it was trained. This
error can be estimated by a test set randomly sampled from these
objects. page-35

tSNE t-distributed Stochastic Neighbor Embedding. It is a low-
dimensional embedding of objects such that similar objects are
modeled by nearby points and dissimilar objects are modeled by
distant points with a high emphasis on the first. Usually objects
are embedded in a 2D subspace and the purpose is visualization by
a scatter plot. page-47 wiki example

Unseen objects This expression refers to objects in the design set that
are different from all objects in the training set.

Unsupervised learning This is learning from examples without the
supervision of a teacher. This almost always refers to a learning
from objects for which no class labels have been given. Examples
are cluster analysis and PCA. page-43 page-28 wiki

Untrained classifier A classifier for which the functional form and a
criterion are given but for which the parameters have not yet been
specified. They need to be optimized by the use of a training set.

Validation Synonym for evaluation and for testing. page-19

Validation set A subset of the design set, usually different from the
training set, used to optimize some training step. page-19

Vector representation An object representation by a vector space.
This is the most popular representation as there are many tools
to analyze sets of vectors. page-24 section 6.2

Visualization Various tools are used to demonstrate in some graphical
way the data, the processing and the results of pattern recognition
problems or the properties of the algorithms to tackle them: scat-
ter plots, graphs, decision trees, dendrograms, learning curves and
feature curves. page-46 section 9.2

http://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
http://37steps.com/exam/mds_ex/
http://en.wikipedia.org/wiki/Unsupervised_learning
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Weak classifier This is a classifier that, after training, is expected to
perform just slightly better than random assignment, also called
a weak learner. Usually such classifiers can be trained fast and
store just a few parameters. They are thereby popular as a base
classifiers in combined classifiers like adaboost. The opposite of a
weak classifier is a strong classifier (strong learner). page-34 wiki
example

Within scatter The estimated variance or covariance of a set of data
points. There is formally no difference with just the scatter. By
within scatter, however, the difference with between scatter is em-
phasized as it restrict itself to the scatter of a single set, while the
between scatter expresses the scatter between sets. page-28 paper
paper wiki

Wrapper The is an approach in feature selection in which as criterion
the performance of the target classifier is used. For each feature set
to be evaluated this performance has to be estimated, usually by
cross-validation. This makes the procedure computationally inten-
sive and may result in overtraining, especially if the performance is
estimated by data that is also used in designing the final classifier.
If this danger exist, e.g. when the original feature size is large, the
so-called filter approach may be preferred, which is based on the
use of a more simple criterion. page-29 paper wiki example
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